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THREE-DIMENSIONAL STRESS CONCENTRATION
AROUND A CYLINDRICAL HOLE IN A
SEMI-INFINITE ELASTIC BODY

by

Carl K. Youngdahl and Eli Sternberg

ABSTRACT

We present a three-dimensional solution, exact with-
in classical elastostatics, for the stresses and deformations
arising ina half-space with a semi-infinite transverse cylin-
drical hole; if the body--at infinite distances fromits cylin-
drical boundary--is subjected to anarbitrary, uniform plane
field of stress that is parallel to the bounding plane. The
solution in integral form was deduced with the aid of the
Papkovich stress functions by means of an especially adapted,
unconventional, integral-transform technique. Numerical
results for the nonvanishing stresses along the boundary of
the hole and for the normal displacement at the plane bounda-
ry, corresponding to several values of Poisson's ratio, are
also included. These results exhibit in detail the three-
dimensional stress boundary layer that emerges near the
edges of the hole in the analogous problem for a plate of fi-
nite thickness, as the ratio of the plate thickness to the di-
ameter of the hole grows beyond bounds. The results obtained
illustrate the limitations inherent in the two-dimensional
plane-strain treatment of the spatial plane problem; in addi-
tion, they are relevant to failure considerations and are of
interest in connection with experimental stress analysis.

I. THEORETICAL ANALYSIS
A. Introduction

The exact solution of three-dimensional elasticity problems is
usually difficult, particularly when stress concentrations due to geometric,
material, or load discontinuities are involved. Unfortunately, approximate
formulations or methods of solution blur or omit completely the effect of
the stress concentration.

The half-space problem solved here falls into the general category
of plane problems in elasticity. An extensive literature exists concerning
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the formulation of two-dimensional approximate theories and the mathe-
matical techniques devised to obtain solutions to the associated problems.*
However, without exact solutions for comparison, there is no way of de-
termining the accuracy, and thereby the limitations, of the approximate
two-dimensional theories and solutions. With reference to the particular
problem discussed here, the approximate plane solutions give meaningful
results for the stress states at points remote from the edge created by the
intersection of the hole and the surface of the half-space, but their accuracy
decreases as the edge is approached. For example, the three-dimensional
solution obtained in this report predicts a large shearing stress just be-
neath the plane surface; this is completely missed by the associated two-
dimensional approximate solution.

Various schemes for treating the three-dimensional aspects of the
plane problem are given in Refs. 3-5. The particular problem of the stress
concentration around a transverse circular hole in an infinite plate under
uniform loads at infinity is discussed in Refs. 6-9. These treatments are
based on the plate thickness to hole diameter ratio being a relatively small
number; as the ratio approaches infinity, the stress-concentration effect
becomes progressively more pronounced and localized near the surfaces
of the plate, necessitating a separate approach and leading to the formula-
tion of the problem discussed in this report. The solution for the axially
symmetric problem of the half-space with a transverse cylindrical hole
loaded by a uniform band of pressure applied at the entrance of the hole is
presented in Refs. 10 and 11; the method of solution of the problem is simi-
lar to that employed here, the main differences being due to the problem
discussed in this report not being axially symmetric.

It may be well to mention some of the stumbling blocks that make
the solution of the problem difficult. 1) Since an exact three-dimensional
solution is desired, the specialized mathematical approaches involving the
use of conformal mapping, complex variables, or potential functions de-
veloped for the solution of problems in the plane approximate theories can-
not be used. 2) The problem is not axially symmetric; hence the simpli-
fications inherent in this symmetry and the techniques developed to take
advantage of them cannot be made use of here. 3) Standard transformation
methods are not applicable. .

An arbitrary uniform plane state of stress can be expressed as the
sum of a plane hydrostatic state of stress and a plane state of pure shear-
ing stress. The elasticity problems for the hali-space with a hole acted upon
by each of these component plane stress states at infinity can be solved sepa-
rately. Since we are working within the framework of linear elasticity, the

*See Refs. 1 and 2 for extensive bibliographies on three-dimensional stress
concentrations and the plane problem, respectively.
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results, properly weighted, can then be superimposed to give the solutions
corresponding to an arbitrary uniform plane stress state, parallel to the
bounding plane, at points remote from the hole. The solution for the plane
hydrostatic state of stress at infinity can be obtained quite easily; in fact,
the plane stress solution is, in this case, not an approximation, but the
exact solution. Consequently, the solution of the problem for the plane
state of pure shear at infinity is the principal objective of this work. It is
conveniently formulated as the sum of the known plane-strain solution and
the solution to the residual problem. The plane-strain solution, which vio-
lates the boundary conditions on the plane surface of the half-space but
satisfies the boundary conditions on the hole and the governing differential
equations, is a good approximation for the stress state at points remote
from the bounding plane. Consequently, the solution to the residual prob-
lem gives the deviation of the plane-strain solution from the exact solution
as the surface of the half-space is approached. The solution of the pure
shear problem thus supplies two important types of information: 1) it shows
what the exact stress distribution is near the surface of the half-space, and
in particular, the distribution near the edge where the hole intersects the
surface; and 2) it shows how far it is necessary to be from this surface for
the plane-strain solution to be a useful approximation.

Numerical results are presented for the exact three-dimensional
solution of the pure shear problem. In addition, these are added to the
simple solution to the plane hydrostatic problem in such a way as to give
the exact solution for the problem of uniform uniaxial tension at infinity,
since this is probably the loading of most engineering interest. In other
words, the stress-concentration effect of a hole in a thick plate being pulled
in one direction is determined. The stress states at and near the edge are
found to be strongly dependent on the Poisson's ratio of the elastic material,
which is of particular significance for photoelastic work, where experiments
must usually be performed with materials of Poisson's ratios different than
those of common structural materials.

In Part I of this report, the elasticity problem is formulated for the
half-space with a transverse hole, acted on, at points remote from the hole,
by an arbitrary uniform plane field of stress parallel to the plane surface.
This problem is broken up into component problems, corresponding to a
plane hydrostatic state and a plane state of pure shear at infinity. The ele-
mentary solutions for the plane hydrostatic problem and the plane-strain
solution associated with the pure shear problem are then presented.

The theoretical solution of the residual problem of pure shear, which
comprises the bulk of the effort reported here, is developed next. The
residual problem is formulated in terms of the Papkovich stress functions,
specialized to provide the proper angular variation for the pure shear state.
It is interesting to note that three stress functions are needed to provide a
complete solution for this problem, as contrasted to axially symmetric
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problems for which it is known that only two are required. Pseudo- .
transform techniques are then employed.* In essence, general solut1on.s
are constructed to the partial differential equations for the stress f\}nctlons
which are not obtainable by transform methods or separation of variables.
These solutions are of such a form that, upon substitution into the boundary
conditions, they yield relations which have the same structure as the trafls-
formed boundary conditions obtained from the application of transformation
methods in other fields. From this point on, the usual transform techniques
can be employed. Fourier sine and cosine transforms are taken with respect
to the coordinate measured along the axis of the hole. A transformation
based on a relation similar to that proved in Weber's Integral Theorem** is
derived; one integral in the corresponding pair of transform relations has
limits of one and infinity, and is therefore suitable for the transformation
in the radial direction. The application of these pseudo-transform methods
results in a single integral equation, which is solved numerically with a
digital computer. The final expressions for the stresses and displacements
are integrals whose integrands involve known functions and the function
which is the solution of the integral equation.

The numerical solution of the integral equation, the numerical check
of the boundary conditions, and the calculation of the desired stress distri-
butions is reported in Part II. Unfortunately, the calculation of the required
integrals is not amenable to straightforward numerical integration methods.
This necessitates the reformulation of the integral representations. In
general, functions are determined which can be integrated in closed form
and have the same asymptotic behavior as the integrands of the desired
integrals. The differences between the corresponding pairs of integrands
and functions are then found to be numerically integrable within appropriate
limits of accuracy. The determination of these functions necessitates ex-
tensive investigation of the integrands of the original integral representation
and probably as much or more effort as the entire theoretical solution of
the problem.

Appendix A summarizes properties of the Bessel functions and re-
lated functions which were used in the solution of the problem. In Appendix B
are derived numerous asymptotic expansions needed in the numerical analy-
sis of the solution. The proof of the modified form of Weber's Integral
Theorem is discussed in Appendix C. Appendix D contains the computer

programs which were written to accomplish the desired numerical
calculations.

*The boundary conditions of the problem expressed in terms of the stress

functions cannot be transformed, so ordinary transform methods cannot
be used.

**See Ref. 13, p. 468, and Appendix C.
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B. Statement of the General Problem

Consider the Cartesian system of coordinates x;, X, and x;. Let
the half-space x3 = 0 be occupied by a homogeneous, isotropic, elastic
material having shear modulus  and Poisson's ratio v. This body is in
a state of uniform plane stress parallel to the boundary x3 = 0 and oriented
such that x, and x, are principal axes. In other words, if we denote the
components of the corresponding Cartesian stress tensor by Tijo 150
1, 2, 3, then

Ty, = T 1

1"

9
v

=
~

I
2

15 22

R for X =0 (1)
where T, and T, are constants.

Consider now the disturbance of this uniform stress field caused by
the presence of a circular hole of radius a whose axis coincides with the
x5 axis (see Fig. 1). The stress state given by Egs. (1) will hold as r goes

to infinity, but we must now also im-

x3, z pose the boundary conditions
1 -rrr:Tre:—,—rZ:O
A~
G = By o =0 (2)
Y f T Tz a0z, Jlez 5 0
onl zit = 10; frk="a} (3)
X

| where T.., Tpg, etc. are the com-

T2 ponents of the stress tensor in cylin-
drical coordinates r, 6, and z. The
solution of the problem is conveniently
expressed as the sum of the solutions
for two basic loadings at infinity,
namely, a plane hydrostatic state of
stress and a plane state of pure
shearing stress. The plane hydro-
static state of stress at infinity is
characterized by

Fig. 1. Half-space with a Hole,
in a State of Plane Stress the plane state of pure shear atinfinity
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is characterized by

v
2

atr = o, 2

(5)

Tas = Tap = Typ = 0

The solution to the general problem corresponding to the.boundary condi-
tions (1), (2), and (3) is then equal to the sum of the solutions to the problern‘s
corresponding to the sets of boundary conditions (4), (2), (3) and (B)i2) (3]t
= T T o Ty =5(m-T2). (6)
The field equations which must be satisfied by a solution to an elas-
ticity problem are the equations of equilibrium (for zero body forces)

TN () (7)

and the stress-displacement relations

2V cie 8
Tij = ,LL(—l_—ZV éijuk,k e ui,j T uJ,l)’ ( )

where u; are the components of the displacement vector and 6;; is the
Kronecker delta. Subscripts take on the values 1, 2, and 3; repeated sub-
scripts are to be summed over; and commas denote differentiation in the

Ju;
sense uj ; Exlf. Substitution of Egs. (8) into Egs. (7) yields the equi-

librium relations in terms of the displacement components:

(1-29) v 55 = 0. (9)

33T
The solution of Egs. (8) and (9) which satisfies the boundary con-
ditions corresponding to the plane hydrostatic state of stress at infinity
is elementary in form and is, in fact, exactly the associated plane-stress
solution for this problem. The solution for the plane state of pure shear
at infinity is, however, much more difficult to obtain. An approximation to
this solution which is good at large distances from the plane z = 0 is the
corresponding plane-strain solution. The difference between this approxi-
mate solution and the exact solution will be called the solution to the residual
problem and is the subject of the major part of this paper. The Papkovich
stress functions are used to obtain this solution; for the sake of uniformity
the aforementioned well-known plane-stress and plane-strain solutions will
also be established by means of these stress functions.

C. Papkovich Stress Functions

The general solution of Egs. (9) can be expressed in the form

2y = ((D+xj‘1’j)li - 20, (10)



where the Papkovich stress functions &, ¥;, ¥,, and ¥; are harmonic, i.e.,

Bl 11
i (1)

and & is defined by
a = 2(1-1v). 12
The substitution of Eqs. (10) into Eqgs. (8) yields

T O (= Zv)(\yi,j+\yj,i) + 3 ¥y 55 - 2v045 ¥ ko (13)
so that the boundary conditions on the stresses can be expressed in terms
of the stress functions. The reason for introducing the Papkovich stress
functions is that the original nine coupled partial differential Egs. (8) and
(9) in the nine dependent variables u; and T,; are converted into four standard
Laplace's equations (11). Since much is known about the solutions to
Laplace's equation, a great deal has been accomplished toward systema-
tizing the solution of the problem. On the other hand, the boundary con-
ditions, which were simple before [Eqs. (2), (3), and (5), for example], now
become coupled partial differential equations when expressed in terms of
the stress functions [see Egs. (13)].

Referred to the cylindrical coordinates Egs. (10) become

2uuy = gar(CIH— r¥, cos B+ r¥, sin6+ 2N 20(¥; cosB +Y¥, sinB);
e : -
2Uug = —r-gé(d)+r‘f1 cos 6+ 1Y, sinf+zY¥;) - 2a(-¥; sin6+ ¥, cos 6);
) :
Bl = $(®+ r¥ cosf+r¥, sin6+2z¥;) - 2a¥;. (14)

In cylindrical coordinates the boundary conditions for the problem
of the plane hydrostatic state of stress at infinity are, by Egs. (2),(3), and (4),

H H H

Trr = Trz = Tre = § 2o e s S
TH:TH:TH=O on ze =0 T =gy
z7 6z £z
EIRREVLT, © 5L Sy
Trr = Tgg = T e T 0
athr, =Hoos z=.0,
EIRENT T o FL,
Toz = T@z = Trz = : e

15
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where the superscript H has been used to identify this solution. Because
of the geometry of the body and the nature of the boundary conditions (15)F
it is obvious that the problem is axially symmetric. For such problems,
it has been provenlz* that ¥, and ¥, may be set equal to zero, and ¢ and ¥,
taken to be independent of 6 without loss of completeness. Therefore, for
the hydrostatic problem we will take

o(r, 6, z) azTHQbH(P, o))

‘l’l(r, 6,z) = Wz(r, Bl =

Yz, 6,2) = aTHz//H(p, o)) (16)

where the dimensionless coordinates

P =r/a; ¢ = z/a (17)

have been introduced, and (bH and 1I/H are also dimensionless. The solution
to Egs. (11) and (16) for the boundary conditions derived from Eqs. (15),
(13), and (16) is readily found to be

e fl2E : £
e 1+v<7'c2)+10gp; ks TR L5

The displacements and stresses corresponding to Egs. (18) are, by
Egs. (14), (13), and (16),

2wl
_ O eH pyHy 2 1-v L L
ot ap(<25 +LY7) = e e
H
2(uy, __5_ H H U 2v
e sy
H
T 2 H
R TR S L
H Jp? 14 p*
H
i (2
_Tee =19 (pHyeyH) - PO LiigiE B |
H P ot 2
H
T H
2z _ O (4H | pyH) gta ) S -y
TH 2 8
+H
w B° om0 3yt _ H_ _H H
TH = apac(¢ + Ly )-(1 ap = U Up o= Tiget= L 0 (19)

*Superscript numbers in the text designate references listed at the end of the report
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In cylindrical coordinates the boundary conditions for the problem
of the plane state of pure shear at infinity are, from Egs. (2), (B ()

St

T ’r%z = ‘rge =l gnr = a, z=0;
Een S G - :
= TGz = Trz = o @z = 0y GevEen
SN S ] SE : s
(= SNy = T c0s 26 iy =0T sin 20
S s albrri=Soasez =
o SEnoS 2
oz s 0z« "tz 0 (20)

where the superscript S has been used to identify this solution. Since 6
appears explicitly in these boundary conditions, it is clear that the problem
is not axially symmetric. On the other hand, the angular variation is quite
simple; uy and u, are proportional to cos 26 while ug is proportional to

sin 26. Previous attempts to solve this problem have essentially involved
taking ¥, and ¥, equal to zero, and ® and ¥; proportional to cos 26, pro-
ceeding along lines analogous to the axially symmetric case. This does
indeed produce the desired 6 variation, but it can be shown by a counter-
example, namely, the plane-strain solution to be discussed below, that this
procedure lacks sufficient generality. Instead, the stress function ¥, and ¥,
must be combined in such a way as to produce the correct 6 dependence.
On inspection of Eqs. (14) it is seen that the proper angular variation will
be achieved if

®(x, 6, 2) = a?rgdS(p, t) cos 26

¥%(r, 6,2) = atgxS(p, &) cos 6

by, 8.u) = a7 /5(p, L) sin B

¥(r, 6,2) = atg¥S(p, £) cos 26. (211)

Equations (14) then become

s P
2uu

=L Fi(¢s+pXS+§ws) - 20XS | cos 26
aTg dp

S _
Ziug 2

—lb e S S S = -

g p(¢> +pX° +EyP) + 2aX S1nt20;

S -
2uu

= Fi(¢s+ pX5 + £45) - 2095 |cos 26. (22)
a‘rs ac

J
The stresses are expressed in terms of these stress functions by substi-

tuting Eqs. (22) into the stress-displacement relations in cylindrical co-
ordinates; this yields



r S
i L NS 5_S_> 2 26,
E e re9) + -2 (2 - ) lov) S eos

S [ S S S
L (%ﬁ - i)(¢5+pxs+f;ws) el ) (éL+ _a_)£_>+ (a+2) -XT}COS 26;

s dp p? ot op
= i S xS NS
T2z _ _az_(¢s+pxs+g¢/5)+(a_2)<a_x__L)-(a+2) W ]cos 28;
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Trz Pt sy g8 axs S
= | —— X - ——- 20. (23)
s l:apai (@2 +pX2 +LyY>) - a Y: a 3 cos

By means of Egs. (21) and (11) we find that the differential equations
which the functions ¢S, XS, and ¢S must satisfy are

vig® = vixS = viS = o, (26
where

VEF = ____BZF +_1_ilf At O°F _12
m dpr PO AL p?

(25)

Thus the solution of the problem for the plane state of pure shear at infinity
will be obtained if we can find ¢S, XS, and ¥S such that Eqs. (24) are satisfied
subject to the boundary conditions derived from Eqgs. (20) and (23).

To simplify the problem somewhat, we will work with the residual
problem created by subtracting the plane-strain solution* associated with
the pure shear problem from the exact solution to the pure shear problem.
To this end, consider

¢F = %(pﬂp%)-. XP = -1/p; 9% = 0. (26)

It is easily verified that Eqs. (26) satisfy Eqs. (24). The substitution of
Egs. (26) into Eqs. (22) and (23) yields

*The associated plane-strain solution satisfies the field equations and the

boundary conditions on r = a, but, in general, not all of the boundary
conditions on z = 0.
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P

2puy ( 20
o

aTg

12

2

S Plar )

= = [ sin 26;
S Y P

uf = ”rgz =71P - 0. (27)

Inspection of Eqs. (27) shows that this is a plane-strain solution, and com-
parison with Eqs. (20) reveals that it is the plane-strain solution associated
with the problem under discussion. Indeed, we see that Eqs. (27) satisfy all
the boundary conditions (20) except* TEZ =" 0lon =8=S0Fsincell =

Pz = 2) Tsp'?‘ cos 20 for all values of z.

Consider now the residual problem, identified by a superscript R,
obtained by subtracting the plane-strain state given by Egs. (27) from the
true solution, i.e., let

u§' = u%— uf, Sty ey

RS SIS 2 .

fles = R E S T L e SRR

¢R E¢S_ ¢P’ XRE XS_ XP; z//R- E'(//S-‘djp_ (28)

We conclude that pR, XR, and 7//R must satisfy Eqgs. (24) subject to the
boundary conditions

*The plane-strain solution satisfies this boundary condition also, and is
therefore the exact solution to the pure shear problem, ifa = 2, i.e., by
Eq. (12), if Poisson's ratio is zero.



20

B _.R _-R . g - 29
T 5 Frw T Tte -0 OB F SN . o
T?z _ 2(2-a) e TGRZ = TBZ = 0 .‘oniz =.0F fi=_ay (30)
02
R RSt 5
Tl:}r = 75{9 = TSZ = Teg = Tz = s 0 at ¥ = enr e (31)

pressed in terms of the stress functions through Egs. (23).

which can be ex
ane-strain solution (27)

The solution to this residual problem added to the pl
is then the exact solution to the pure shear problem.

D. Construction of the Stress Functions for the Residual Problem

Rather than superimposing the solutions of the differential equations
in a trial-and-error fashion in the hope of fortuitously satisfying the bounda-
ry conditions, it would seem preferable to use the powerful tools of integral
transform methods to solve the problem systematically. This approach
seems particularly encouraging in that parts of the solutions to Egs. (24)
obtained by separation of variables are common transform kernels. Al-
though it turns out that integral transformations are not completely appli-
cable to the solution of this type of problem, some of their properties can
still be used to advantage in dealing with the boundary conditions.

It will be convenient to consider separately the mechanism for satis-
fying the boundary conditions on each of the two boundaries. To this end let

oR = ¢+ XR =X+ Xp YR =9+ (32)
where the subscript 1 identifies the parts of the stress functions constructed
to handle the boundary conditions (29) on the cylindrical surface and the
subscript 2 identifies the parts constructed to handle the boundary condi-

tions (30) on the plane surface.

1. Boundary Conditions on the Cylindrical Surface p = 1

As € is the independent variable on the boundary p = 1, ex-
amination of Eqs. (24) suggests the use of Fourier transforms with respect
to this variable. If the Fourier cosine transform is taken of ¢, and X,;, and
the Fourier sine transform of ¥,, this will insure that their contributions
to ng and ng will be odd functions of { and hence zero at { = 0. Let

81(,03)’) = '/c; $1(p, &) cos yt dt;

Xilp,y) = /0. Xy(p, £) cos vyt dt;
@1(9:7) = j;m?h(p,C) sin y¢ dC. (33)
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Applying these transformations to Eqgs. (24) we are led to familiar differ-
ential equations in p which have the solutions

$ = MiY Kaolyp):  Xi = Maly) Kilyp)s I = My(Y) Kalyp),  (34)

where K, are the modified Bessel functions of the second kind!® and M,
M,, M; are arbitrary functions. The modified Bessel functions of the first
kind, In(’y ), are also solutions, but have been discarded since they are un-
bounded as p - ». Unfortunately, however, the boundary conditions on ¢,
Xy, and ¥, deduced from Eqgs. (23) and (29) cannot be transformed because
of the {¥ terms which do not transform in terms of 1//>1.

In general, integral transforms are used for two reasons:
(a) to simplify the solution of differential equations by reducing the number
of independent variables, and (b) to easily incorporate the boundary condi-
tions into the solution. We have been able to take advantage of (a); by using
the Fourier transform inversion theorem, and Eqgs. (33) and (34), we find that

2 00
= ;[ M, () Ka(yp) cosyE dv;
0
=2 [ wy) 5090) cos 38
0

U = %f M;(y) Ka(yp) sinyC dy. (35)

However, these solutions are rather obvious because of the wealth of infor-
mation available on the solutions of Laplace's equation. On the other hand,
we have not been able to take advantage of (b), which is regrettable, as this
was the primary reason for using transform methods here. This is not
surprising though, as it is well-known that the use of stress functions sim-
plifies the governing differential equations but complicates the boundary
conditions.

It would seem advisable not to use transforms to solve the dif-
ferential equations, but rather to use the available extensive information
regarding the solutions to Egs. (24) to make the boundary conditions ame-
nable to transform techniques. An examination of Eqgs. (23) reveals that
the troublesome £y terms always occur in the combination ¢+ pX + LY,
moreover, ¢ occurs only in this combination, never by itself. Can we
therefore add something to ¢ which is a solution to the first of Eqgs. (24)
and which will give ¢, + pX; + {¥; the appearance of an inverse transform?
At the moment, from Eqgs. (35),
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¢+ pX1 + LYy = %f {{M,(y) Kalyp) + Maly) pKylyp)] cos ¥
0

+ Msly) Kylyp) ¢ sinyt} dy. (36)

Indeed, there are solutions to Egs. (24) which are not obtainable by separa-
tion of variables or transform methods; these can be found by trial and
error using the differentiation and recursion relatlons for the Bessel func-
tions or by noting that if f is harmonic, then % - Vf is also harmonic.
Therefore, since K,(yp) cos Yy cos 26 is harmonic,

(p -a% + C-aéc—)[Kz('yp) cos vt cos 28] = [ypKilyp) cos y& - yEK,(yp) sin vt] cos 26,
(37)

where

is also harmonic; moreover, it is an even function of £. Instead of taking
¢, as in Eqgs. (35), let us take it in the form

s {‘T—f (M, (y) Kalyp) cos & + Ms(y)[pK3(yp) cos ¥ - LK,lyp) sinyL]} dy.
0

(38)
Then Eq. (36) will be replaced by
$1 + pXat CYy = —‘f v) Kalyp) + Ma(y) pKilyp) + Ms(y) pK5(yp)] cos y& dy,
(39)

which has the proper transform form.

Inspection of Egs. (23) reveals that all the boundary conditions
applied at p = 1 can be expressed in terms of ¢; + pX, + ¢, X,, and ¥,,

evaluated at p = 1, which all have the proper transform appearance now.
The three boundary conditions (29) will then lead to equations of the form

Fy(£) = j;wfl[Ml('y)r M,(v), Ms(v), Y] cos ¥¢ dy;
ro0) = [ al®), M), M), 3] s 7L, s
Fy(L) = j;wf3[Ml('Y), M,(y), Ms(y), y] cos y& dv,



where the functions F,;, F,, F; are derived from the applied loading and the
functions ¢,, X,, and ¥, used to handle the boundary conditions on the bounding
plane, and f,, f;, and f; are linear combinations of M;, M,, and M;. From the
Fourier transform inversion theorem we have*

-3/ f tty) o2 Vp 08 E ay ac. (41)

Therefore, multiplying each of Eqs. (40) by the appropriate trigonometric
function and integrating with respect to { from zero to infinity will remove
f,, f5, and f; from under the integral signs and result in three simultaneous
algebraic equations for M;, M,, and M; in terms of the Fourier transforms
of F;, F,, and Fj.

2. Boundary Conditions on the Plane Surface { = 0

Since ¢;, X,, and ¥, have been constructed so that their contri-
butions to the stresses 7g, and T§z are zero at £ = 0, the functions ¢,, X,
and ¥, should also be constructed so that their contributions to these stresses
are zero at £ = 0. It is apparent from (27) that this will be accomplished if

36

3t =S (a1 R, e a= 105 (42)
Perhaps the most obvious means of satisfying the remaining

boundary condition, the condition on Tl;z of Egs. (30), is to transform the

differential equations (24) for ¢ and ¥ by the Hankel transform of order two.

This leads to very simple differential equations in { which have as their

solutions e+7t and e-Y{. Inversion then produces the stress functions;**

by means of Eqs. (42),

¢, = (1 -06)[ v M) Tlyp) e Yo dvi xp = O
0

V2 f My4(y) J2(vp) e"YC dy, (43)

where J, is the Bessel function of the first kind of order two. The boundary
condition then becomes

2(2-a)
o2
*See Ref. 14, p. 15.

**The solution corresponding to e
as £ - =,

I\
—

+ Fylp) = f YM4(y) To(lvp) dy, p = (44)
0

+v€

can be dropped because of its behavior

23
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where F, results from the functions ¢;, X;, and ¢ previously discussed.
The Hankel transform inversion theorem can be written*

f(n) = j;wfowf(v) YPIm(vp) Tm(ne) dydp. (45)

In order to apply this we must multiply Eq. (44) by pJ,(np) and integrate
with respect to p from zero to infinity. However, this is not a valid pro-
cedure since no boundary condition is prescribed for 0 =p <1 where there
is no regional boundary. It follows that the Hankel transform cannot be
used; what is needed is a transformation having a range of integration from
one to infinity. We will therefore follow a procedure similar to that used
by Blenkarn and Wilhoit.?

Consider Weber's Integral Theorem,** according to which a
properly behaved function f can be given the following representation:

2 2 = & ® 0 0 6
tn) [32m) + ¥2 0] = [ [ vettn) @%v.p) Ql(np) avde. (46

where

B .0) = Yo l¥) 3aabyp) - Tply) Toplye) (47)

and Y., is the Bessel function of the second kind of order m. Note that the
integration with respect to p is from one to infinity and that Eq. (46) has

the form of an inversion theorem for a transform with kernel anA Since

in this problem p = 1, the function Y ,(yp) is quite admissible as part of

the solution, in contrast to problems conveniently solved by use of Hankel
transforms where it would be unsuitable because of its infinite valueatp = 0.

A solution to the residual problem discussed in this report was
obtained using the transformation kernel Q9. It was discovered, however,
that, although all integrals involved in the final expressions for the stresses
were theoretically convergent, the difficulties encountered in their numerical
evaluation were apparently prohibitive. The problem was then successfully
solved by a slightly different transformation, which can be summarized by
the inversion relation

f(n){[J'm(ﬂ)T* [Y'm(n)] Z} // vPE(y) Qp, (v, p) @ (n, p) dydp. (48)
1 0

*See Ref. 14, p. 16.
**See Ref. 13, pp. 468-470, for details.
fSee Appendix C for a proof of this relation.




In Eq. (48)
A a7, (y)
et p) = )T (yp) L ) Y (el - X ty) = A Tty) = e
(49)
here m = 2 is the appropriate value since Q,(y, p) e"YC is a solution to the

first and third of Eqgs. (24). Therefore, in place of Eqgs. (43) we will take
the stress functions ¢,, X,, and ¥, in the form

b, (l—a)f v~ IM4(y) Dl P) S e G = 0
0

Uy = f My(y) 24y, p) «7F . (50)

The boundary condition then becomes, rather than Eq. (44),

E_(_%;_ou) + Fylp) = / YM(y) Dy, p) dy; p = 1. (51)
0

Applying the inversion relation (48) to Eq. (51) gives

M4(n){[1'z(n)] " [Y'z(n)] 2} =[ p['%ﬂ 5 F4(p)] Q,(n, p) dp,  (52)
1

so that the undetermined function My has been removed from under the
integration sign. Using the integral transformation implied by Eq. (48)
rather than that implied by Eq. (46), we obtain integrals for the stresses
which are very similar in appearance and have the same theoretical rates
of convergence, but which are more amenable to numerical evaluation.

E. Solution of the Residual Problem

In accordance with the reasoning of the previous section, we take
the stress functions in the form

e ig) = f {[A(v) - %C('Y)] Ka(yp) cos v + [B(v) —%C(v)] [VpK‘z(vp) cos YL - YEK,(yp) sin VC]
0
+ (1 -a) y*Dly) (v, p) e_yc}&y;

R, t) - %/ C(v)[%Kz(vp) i vK'z(vp)] cos v dv;

D)= {[B(v) - —OI-L-C(V)] YK(yp) sin yE + v’Dly) Qu(y, p) e»yg} dy.

ks

(53)

25



The undetermined functions A, B, C, and D have been arranged st as to
simplify subsequent expressions. Note that the recurrence relation for the
K, Bessel functions has been used to express Kl(yp) in tern}s of Kz(’)’f?) and
K‘z(yp) in the equation for XR. The stress functions (53) satisfy the d1ffe.r-
ential equations (24), consequently the stress field derived from them will
meet the equilibrium equations ({67}

Substituting Eqs. (53) into the equations in (23) for Ty, Trgr and Trz,
evaluating the resulting expressions at p = 1, and applying the boundary
conditions (29), we find

f {AWH? +4 - K]+ BO[@-1) ¥* - 4 + (¥*+4) Ki)]
0
- 2C()[¥? + 2 + K(Y) I} Ka(y) cos v dy

/ yD(y)[4(@ - 1 -vE) +¥y3(yE-1)] P L dy;

3|

"

f 2a(y)[1 - K(y)] + 2B(y)[-(v* + 4) + K(Y)]
0
Lid 5 et
+ CY? + 4 + 2KV Ky(y) cos yL dy =— | yDOy)la-1-vE) e dy;

f {A(y) K(y) + B(y)[v? + 4 + aK(y)] - 2C(y)[1 + K(y)]} yK,(y) siny{ dy = 0,
0

(54)
where
K(y) = yKy(v)/Ko(y) (55)
and the relation*
Qv 1) = 2/my (56)

has been used. Upon multiplication of the first two of Eqs. (54) by(Z/TT) cosnl
and the third by (Z/7T) sin ng, integration with respect to { from zero to
infinity, and use of Eq. (41), we obtain

*See Ref. 15, p. 79, No. 28.
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A(n)n? + 4 - KM)] + BM)@-1) n® - 4 + (n*+4) K(n)] - 2c(m)[n* + 2 + K(n)]

kg [ 00 )] )

2A(M[1 - K(n)] + 2B(n)[- (n*+4) + K(n)] + C)[n? + 4 + 2K(n)]

> Trzliz(ﬂ) ,/O‘m D(V)["‘ s Zg(%)] g(%) dy;

A(n) K(n) + B(n)n? + 4 +aK(n)] - 2c()[1 + K(n)] = 0, (57)

where

glx) = (1+x?)! (58)

The Fourier cosine transforms'®

/ ve ¥t cosne at = g(l>:
; Y

f v(1+v¢) e-’YC cosnt dt = Zg2<—;7—> (59)
0

have been used in the derivation of Eqs. (57). Equations (57) are three
simultaneous linear algebraic equations in A, B, and C; their solution, after
a convenient change of the dummy variables, is

. 16a * e 8 ¥
A = 8 ) + 1) f D(E) g(g) 4B G+ 4 U] 5)

+ dagWIKK) + 1) f D(£) g@) at;

B 160 % ) 8 5 (Y q¢.
B(y) = el o) fz(’y)/‘: D(£) g(g) de +W2Kz(y) 25) K(y) f;(v)f D(¢) gz(g) dE;

0

oo e i i Lo - z(@
Cly) S A fl(’y)f D(€) g<€) dé +7T2Kz(y) 7 K(y) fz(')’)£ D(€) g (g) dies

0

(60)
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L
<
i

V2Y? + 4 - K3(y)] + 3aK3(y);
£,0y) = v - (v*+3) Kly);

£3(y) = (Y2 +2)(y2+6) - 2y*K(y);

h
»
—
<
—
i

= (y2+3)(v2+4) - Y2K(y) - afz(y) + 3aKy);

=
2
i

[y + 4 - K2y)] f5ly) + al-472 + 8(y2+3) Kly) - Y’K*) - 6K°()].

(61)
Substituting Eqs. (53) into the equations in (23) for T,,, Tgy and Try,
evaluating the resulting expressions at ¢ = 0, and referring to Egs. (30), we

see that the boundary conditions for TQRZ and ‘I‘lrlZ are automatically satisfied,
while the boundary condition for 7 is equivalent to

f v*D(y) Qu(y.p) dy = 2(2—;“—) +f {{aly) + (a+2) B(y) - 2C(v)] Ky(vp)
0 p 0

+ B(y) veKlyp)} v* dv. (62)

Multiply Eq. (62) by pQ,(n, p) and integrate with respect to p from
one to infinity, and use Eq. (48) to obtain

D(n) Iy T + [¥yn)]%}

s 8(2__3) -2 f {A(v) K(y) + B(y)[y? + 4 + aK(y)]-- 2Cly) K(y)
™ ™ J,
+ 2B(y) K(y) g(%)}g<%> YKa(y) dv, (63)

where use has been made of the integrals*

*These integrals can be found from the indefinite integral

) 9Q(n,
/pﬂz(mp) Kolyp) dp = {Qz(n,p) it K,(yp) M]

oy dp d3p
which can be checked by differentiation (see Appendix A, Sect. 3). The
second of Egs. (64) is obtained by putting in the proper limits; the first is

found from this result by multiplying by v and letting y = 0; the third is
found by differentiating with respect to y.
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4
f pQ2(n Z) dp = 7T_773;
f P21, p) Kalyp) dp = -%—i(l) g(—y—):
ko) 1
f pS2(n, p) YeK}(vp) dp = —{ V2 +4) Kyly) + 2yKy(y) [l - g(%)}}g(%)

(64)

The functions A, B, and C of Egs. (60) can now be substituted into
Eq. (63) to yield an integral equation in the function D:

pin)mev(n) = 322, f D(£) L(€,n) d, (65)

0

where
Y(n) = [3yn) + [vym)T (66)

and the symmetric kernel L(€,7) is defined by

BE o iy 1)
e D o(3) o3

{afl(v) + 20 [g (%) i g(%)] K(y) f2(y) + g(%) g(%) K*(y) fs(v)}dv. (67)

The integral equatlon (65) was solved with the IBM-704 for Poisson's ratios
of 1/4 and l/Z that is, a = 3/2 and 1). Figures 2 and 3 are graphs of the
D(T)) functions. Details of the calculations are presented in Part II.

0.5

Fig. 2

The Solution D(7) of the Integral Equation
for Poisson's Ratios of 1/4 and 1/2

29
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Fig. 3. Log-Log Plot of n*D(n) vs. n for
Poisson's Ratios of 1/4 and 1/2

F. Final Form of the Displacements and Stresses for the Residual Problem

Define the auxiliary notation

Il

Qily, p) = Yily) Jalyp) - Jaly) Yalye):

Gly,p) = Kalyp)/Kaly);  G'(y,p) = pKalyp)/Kyly). (68)
The stress functions (53) are expressed in terms of the four func-

fions A B C, and D. Since by Eqs. (60) we have the first three of these

as functions of the fourth, we can express the stress functions, and thereby

the displacements and stresses, in terms of D alone, where D is the

solution of the integral equation (65).

Hence, by Egs. (60), (53), (23), and (28), we find that the displace-
ments and stresses for the residual problem are:

R 0
Ao e 2
a’rsrcos Tl / D(”)[“ ~a+nt) n*yn, o) e 1% + U . p, C)} an;:

0
(69)



2uuB(p, 6, ¢)

aTg sin 26 -

= f -(a+nt) n*Qy(n, p)

2y, (p 6,t)
aTg cos 26

7—rr P, 6, C)
sicos Tg cos 26

TQRQ(FL 8,€)

Tg cos 20

D(n) |2(a - 1 -nt) n*0™'Qa(n, p) File Ug(n, p, C)} dn

D(n) [{[4(1 -a+nb) p72 + (1 -nE) 7] Q,

e Be S 1:)] dn

(n, p)

+ (a-1-nt) np~'ayn, p)}nze'nq e ’:)] dn

:/ D(n) [{[4(a-1-né) k.

+ (1~ i+ L) np'lﬂé(n,p)}ﬂze-ng o Tee(n,p,t)] dn

+ (2-a) n?] Q(n, p)

R. ,e, - =
i, f D(m[(mc) n*9,(n, p) & + szpvi)] d
0

Tg cos 26

20,6, 8)
Tg sin 26

TQZ P 6 C_:
Tg T sin 26

7—rz,(lo s 1e)
Tg cOs T cos 20

T o(n, o, C)} dn

=f D(n){Z(l—MnC)[p'ZQz(nyfa) - np”lQyn, p)In?e

=ifc

fD an 1£Qa(n, p) e nC+Tez(n,p,C)]dn

fD(n notay(n, p) &1+

T kN0 C)] dn

(69) Contd.
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T%D(p’ 6,8) =t Ti‘{r s Tge i ng
Tg cos 26 Tg cos 26

= (4-a) f D(n) [n"flz(n,p) S Tpp(n: P, C)] dn
0 (69) Contd.

where

Uyn.p.8) =5 f C—°;-g—c[zag( JiGty. p)ly’e® +4) £z - 20]
0 [}

m

G'(v,p) Kig} + g (n) K{Gly, p)[(y2p? +4) £5 - 8af;]

+G'(y, p)[-(y?+4+aK) f3 + 4oaf2]}] dy;

Ug(n, p, &) = —lif C—?:TVC-'[ (77>{'ZG(7' p) fs + G'(y, p) Klf, - 26,1}
0

m
i gz(%>{G(y,p)[(yz+4+aK) e ahai]
G'(y, p) K*[-1£3 + Zafz]}} dy;

_8 [Tysinyt 5 ‘
U,(n,p.8) = ”2—/0. —ST“—[ Zotg(ﬁ){G(V:P)[f.; + 2af,] + G'(y, p) Kfz}

+ g(L)clr, Py +4 - aK) 1, - 4afy] - G'(y. p) zm] d;
mpt) = fﬁj—{mg [vp{[ a-1)y%0? - 4] £, + 26,

+ (v2p2+4) £} + G'ly, p) Kl(y?p* +4) £, - 21, - f4]]

+ gz(%)[G(V, p){-[(v?p* +4)(y* +4 +K) + 4aK] £,

+ dafy2p?+4 + 2K) f,} + G'ly, p) K{{(y*p?*+4 +a) K

+y2 +4]f; - 4a(2K+1) £ }]} (70)



Tog(n, p, £) T e ocg(l) [G(v,p){[(a- 1) y20% + 4] £, - 2f; - 414}

2 2
i ¥ p2A n
+ G'(y, p) K[- 4f, + 2f, + f4]]
+ gz(%)[G(v,p){[(oc- 1) y20%K + 4(y* +4 + K +aK)] £,
- 8a(K+2) fo} + G'(a, p) K{-(v2+4+4K +aK) £,

+ 4a(2K +1) fz}]}dy;

Oo & os
T, (. pt) = %/0‘ V—CELQ[_ 20g (%){G(y,p)[(a+ Begiri]

+ G'(y, p) Kf} + gz(%-){G('y,p)[(yz+4 - )

- 4af,] - G'(y, p) Kzf3}] d;

Tzoln. p. L) EW_S?./ CC;SZA% “g(%){G(v,p)[- 4(y?02+4) £,
0

+ (y20% +8) f; + 4f,] + 2G'(y, p) K[2f, - £, - 2f4]}
+ Zgz(%lw)[(}(y,p){—[('yzpz+4+oa) K +v2 + 4] £,

+ a(v?0*K + 4 + 8K) f,} + G'(v, p) K{(y*+4

+ K +0aK) f; - 2a(2 +K) fz}] }d’y;

Toz(n. p, €) = %f Yi;r;—lg[ag(%){«}(v,p)[afz +£,]

+G'(y, p) K[4f, - ;]} + 2g2<%){(}(y,p)[- (y2+4) 5

+ 4at,] + G'(y, p) K2, - ale}] ay;
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Tyt t) == [ 1202 20g(X)ichy, o) (- (%" +4) £z + 5]
0

- G'(v, p) Klaf, + £a]} + gz(%) K{Gly, p)[- (v2p*+4) £,

¥ 4af,] + G'(y, p)l(y2+4) £3 - daf]}H | dvi

_ 8 [Tcosvt » il 2(7y ]

L s Ly 2 A T LY B 1 dy.

TDD(T), [ C) ﬂZ/ A ] G(v,p)[ag<n> 2T 8 (n) Sy
0 (70) Contd.

In Egs. (70), y is the argument of K, f;, f2, f3, f4, and A, which are
defined in Eqs. (55) and (61). Note that although the integrals for Uy, Tryp,
etc., are complicated, the integrands are composed entirely of known
functions.

G. Check of the Solution and Results

If the function D is such that all the integrals exist, the stresses
and displacements as given by Egs. (69) satisfy the field equations (7) and
(8). Moreover, the boundary conditions (29), (31), and the last two of (30)
are met by Egs. (69) for any function D, again providing all the integrals
exist. If the integral equation (65) is numerically solved for D(n), the re-
sults must satisfy two criteria: the behavior of D as n=>® must be such that
the necessary integrals exist; and the stress TBZ at z = 0 calculated from
the sixth of Eqs. (69) must satisfy the first of boundary conditions (30).

Accordingly, the numerical calculations are conveniently divided
into three main sections: (1) the solution of the integral equation; (2) the
check of the boundary conditions on TI;Z; and (3) the calculation of the desired
stresses and displacements in the vicinity of the edge p = 1 and €'= 0. The
details of these calculations and the accompanying reformulation of some of
the expressions are discussed in Sect. II. A summary of the results with
some relevant comments will be given here.

It should be pointed out that the solution depends on Poisson's ratio
in a complicated fashion; note that the parameter a = 2(1 - v) appears in
Eqgs. (65), (67), (69), and (70) both explicitly and implicitly through the
functions A, f;, and f;, defined in Eqgs. (61). Calculations were therefore
performed for Poisson's ratios of 1/4 and 1/2, the solution for ¥ = 0 being
known in advance.

1. Solution of the Integral Equation*

The integral equation (65) was solved for D(n) at seventy-six
values of 7 in the interval (0,2000). Simpson's rule was used to evaluate

*See Sects. II-A, B, and E for details.
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the integral in Eq. (65), using as data points for £ the same seventy-six
values as were used for 1. This necessitated the calculation of the kernel
L(E,m) for 76 x 76 combinations of ¢ and7. Taking advantage of the sym-
metry of L(E,n) and the fact that L is zero if either £ or 7 is zero [see
Eqgs. (67) and (58)], we are still left with 2850 combinations of & and 7 for
which L must be numerically evaluated. The calculation of these values,
their substitution into Eq. (65), and the subsequent solution of the resultant
system of seventy-five simultaneous equations in the seventy-five* unknown
values of D(T)) took 26 min with the IBM-704 for each value of Poisson's ratio.

Figures 2 and 3 are plots of the numerically determined values
of D(n) and n4D(7’)), respectively, for v equal to 1/4 and 1/2. It is apparent
that as 7=, D(n) behaves essentially as c(v) ™%, with c(1/4) % 0.322 and
c(l/Z) ~ 1.260. The deviation from this behavior at the largest values of
7] is probably due to the inaccuracy caused by truncating the integration in
Eq. (65) at 7 = 2000. The assumption that D(n) ~ cn™* as7 > ©assures the
existence of the integrals for the stresses and displacements. This behavior
is also utilized in numerically evaluating the contributions to these integrals
of the integrations over large 7, the contributions of the "tails" being par-
ticularly significant at values of p and £ near (p =1, £ = 0).

2. Check of the Boundary Condition on 7‘52**

Tables I and II give the results of the numerical check for the

stress T,, on the bounding plane z = 0. If the function D(n) were exactly
correct and if the numerical procedures for evaluating lep\z were exact,

Tl;Z(p, 6, 0) as calculated from Egs. (69) and (70) would be 41/p'27's cos 26
[see the first of Eqs. (30)], or, in other words,

a0 E (p,8) + T (0,8, 0)

would be zero [see Eqgs. (20) and (28)]. Large deviations of ng(p, 8, 0) from
zero would have indicated a mistake in the theoretical or numerical solution
of the problem. On the other hand, small deviations give an estimate of the
errors introduced through the use of approximate numerical procedures.

It may be observed from Tables I and II that the deviations tend to increase
in magnitude as p approaches unity. This is believed to be due to the dif-
ficulties involved in evaluating the integrals for TSZ for € equals zero and
p near one, rather than due to errors in the values of D("q).

*D(0) is found analytically in Part II, Sect. E, leaving seventy-five values
of D(n) to be determined numerically.
**See Sects. II-A, C, and F for details.
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TABLE I. Check of the Boundary Condition for Poisson's Ratio = 1/4.
Values of TI}Z and ng on the surface z = 0 for various radial positions.
ng(p: 9» 0) TEZ(p’ 6’ o)
o = r/a Tg cos 26 Tg cos 26
Numerical Theoretical Numerical Theoretical
Result Value Result Value
1 1.00218 1.00000 0.00218 0
1.02 0.95576 0.96117 -0.00541 0
153 0.82730 0.82645 0.00085 0
1:2 0.69578 0.69444 0.00134 0
1.4 951100 0.51020 0.00080 0
1.6 0.39070 0.39063 0.00007 0
1.8 0.30879 0.30864 0.00015 0
2 0:25011 0.25000 0.00011 0
4 0.06228 0.06250 -0.00022 0
6 0.02706 0.02778 20.00072 0
8 0:01523 0.01563 -0.00040 0
10 0.00903 0.01000 -0.00097 0
TABLE II. Check of the Boundary Condition for Poisson's Ratio = 1/2.
Values of le:{z and T3, on the surface z = 0 for various radial positions.
R S
T len e o)) Tzz(p' 8, 0)
Tg cos 26 Tg cos 26
p = r/a
Numerical Theoretical Numerical Theoretical
Result Value Result Value
1 2 01T6T 2.00000 0.01167 0
1202 1.89914 1.92234 -0.02320 0
1l 1.65466 1.65289 0.00177 0
12 1239707 1.38889 0.00373 0
1.4 1.02146 1.02041 0.00105 0
1.6 0.78148 0.78125 0.00023 0
178 Lo f5 v i 0.61728 0.00009 0
2 0.49982 0.50000 -0.00018 0
4 0.12432 0.12500 -0.00068 0
6 0.05381 0.05556 -0.00175 0
8 0.03120 0.03125 -0.00005 0
10 0.02027 0.02000 , 0.00027 0
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¥ In the expression for TE{Z in Egs. (69), the term in D(‘l’)) 77492(77:10)
Rl goes to zero quite rapidly if £ ;! 0 because of the el factor, and the
corresponding integration over 7 can easily be performed numerically. If
¢ equals zero, however, this integrand is an oscillating function with slowly
decreasing amplitude. In the numerical integration small steps in 7) must
be taken to follow the oscillations; however, the numerical integration must
be carried out to a large value of 1) before asymptotic expansions become

applicable in evaluating the contribution of the "tail" of the integrand.

In the sixth of Egs. (69) the integration of D(T)) Tzz(n,p, 0) over
7 from zero to infinity was approximated by applying Simpson's rule out to
a large value of 1. The contribution of the "tail" of this integrand was
neglected. It can be shown to be of increasing importance relative to the
value of the integral as p approaches unity.

To further complicate matters, the integral representation for
TlZ)‘Z in Eqs. (69) is discontinuous at the edge (p = 1, £ = 0), that is, substi-
tution of the values p = 1 and { = 0 into the integral and numerical inte-
gration give a different result than that obtained by taking the limit of the
values of the integral asp -1and { >0. The difference can be theoretically
shown to be exactly 4c(1/)/71’, where c(v) is as discussed in Part 1 above.
This provides a good check on the values of c(v) determined from the graphs
of D(n).

The integral representation for ’ng was evaluated at p = 1 and
€ = 0 for the two values of Poisson's ratio considered and 4c/7T was added.
The resulting values of the stresses are those given in Tables I and II for
p = 1, and are seen to be very close to the theoretical values. Obviously,

the integral representations (69) are to be replaced by their limiting values
as p—~1 and £ >0 when calculating the stresses at the edge. In calculating
the stresses near the edge, however, we are faced with the customary dif-
ficulties in numerically evaluating the integral representation of a sec-
tionally discontinuous function near a point of discontinuity.

It was mentioned in Sect. D-2 that the problem discussed in this
report was initially solved by use of the function Q9 of Eq. (47) rather than
by use of , of Eqs. (49). The integral equation obtained in this original
solution was solved numerically with no particular difficulty, but the solution
[call it D°(n)] was found to be such that it could not be replaced by a simple
asymptotic representation except for 1 greater than approximately 1500.
Because of this, the difficulties encountered in numerically evaluating the
integrals needed for the check of the boundary condition proved to be pro-
hibitive. It may well be that the first formulation of the problem and the
corresponding solution D°%n) are quite correct, but without the check of the
boundary condition nothing definite can be stated as to their validity.
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By inspection of Tables I and II, it appears that the solution to
the second formulation, discussed in detail in this report, checks quite
nicely. Since the numerical approximations involved in the check of the
boundary condition are more inaccurate than those involved in the solution
of the integral equation (65) and in the evaluation of the stress and displace-
ment fields at points where £ ,{ 0, it seems likely that the solution D(n) and
the results presented in Parts 3 and 4 below are more accurate than the
results for T%Z(p, 6, 0) presented in Tables I and II. In other words, im-
proving the numerical techniques for evaluating T%Z(p, 6, 0) should result
in less deviation of this quantity from zero, even though the same D(n) is
used.

3. Stresses and Displacements near the Edge p = 1, £ = 0 for
the Pure Shear Problem*

Figures 4, 5, and 6 are plots of the stresses TEZ, Tg‘e, and TS@Z
on the hole as a function of axial position; Fig. 7 gives ug on the bounding
plane as a function of radial position. From the plane-strain approximation
to the pure shear problem, given by Egs. (27), we have that

sz(l,e)/’rs cos 26 = -4v; Tge(l'e)/'fs cos 26 = -4;

THo(1,6)/Tg sin 26 = 0;  2pul(p,6)/atg cos 26 = 0. (71)
;s { I T I T
1/.0__/ s
2 T (15 645) 7
0.2 - e
T, cos28
- s -1
-0.4 — —
-0.6 — —
L 4
0.8 =1
I L ve1/4 -
S e e e e e Bl
» be TP '9 -
B ohale ____%;2; = T,z on the Hole for the
B 3 e Pure Shear Problem
i = =
- 16— =
-8 =
- vel/2 A
20— mmmm—m— =M e TS
i I 1 I L
o | 2 3

*See Sects. II-A, D, G, and H for details.
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We also note that the plane-strain approximation and the exact
solution to the pure shear problem coincide if the Poisson's ratio of the
elastic material is zero. In addition, we expect the plane-strain approxi-
mation to be quite good at points on the hole which are far from the surface
£ = 0, and this is indeed borne out by Figs. 4, 5, and 6. It can be theoreti-
cally shown that the residual stresses T;: given by Egs. (69) go to zero as
£ approaches infinity and hence that the stress state T%; has the stress state
7P as its limit as ¢ goes to infinity. We see from the figures that the dif-
ference between the stress states Tis~ and TE on the surface of the hole be-
comes small at distances of only a few hole radii from the bounding
plane £ = 0.

On the other hand, the difference between the exact solution and
the plane-strain approximation is quite pronounced for small values of £
Because of the presence of the free surface at t = 0, the material near this
surface is less constrained than material which is far from it. Consider
for the moment the plane 6 = 0. From Fig. 7 we see that the material
along ¢ = 0 deflects downwards, or, in other words, bulges out. The com-
pressive stresses TEZ and Tge are thereby decreased significantly in mag-
nitude, as can be seen from Figs. 4 and 5. On the plane @ = 7T/2, the
material on £ = 0 moves up, and the tensile stresses 77, and TS, near
£ = 0 are much smaller than the values at large £. This diminishing of
the normal stresses is accompanied, however, by severe shear stresses
’rgz acting on the planes 6 = iTr/4, 137T/4, just above the free surface
(see Fig. 6).

It is particularly noteworthy from the standpoint of photo-elastic
analysis that the Poisson's ratio of the material has a large effect on the
magnitudes of the stresses near the edge p = 1, s

4. Stresses and Displacements near the Edge p = 1, £ = 0 for the
Uniaxial Tension Problem

As discussed in Sect. B above, the solution for any uniform
plane state of stress can be obtained by properly superimposing the solutions
for the plane hydrostatic state of stress, given by Egs. (19), and the plane
state of pure shearing stress, given by Egs. (28), (27), and (69). A plane
state of particular physical interest is that of uniaxial tension at infinity.
If we assume this uniaxial tension, of magnitude T, to be in the x, direction,
this state will be characterized by taking 7, = T and 7, = 0 in Egs. (1).
Identifying the solution to the uniaxial tension problem by the superscript T,
we can then write, referring to Egs. (6) and (28),

u;(p. Shelelli= ull:l(p. £) + u?(p, 6) + ul}(p, 6,t), etc.;

’r;[‘r(p, g, t) = TII_.Ir(p, &) + 'rl:r(p, 6) + Tl}r(p, 6,t), etc., (72)
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= |
TH = Ts = TTT c

The stresses ‘rgz, Tge, ng on the hole and the normal displacement u:E on
the bounding plane are presented in Figs. 8, 9, 10, and 11.
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II. NUMERICAL ANALYSIS
A. Introduction

The numerical computations performed were, briefly, the solution of

the integral Eqs. (65) for the function D(7); the evaluation of the stress
§Z(P 6, 0) from Eqgs. (69) as a function of p in order to check the satisfac-

tion of the boundary condition and thereby the entire solution; and the evalu-
ation of the stresses Tl;‘z(l eyt)im 96(1 6, andTez(l 6, t) from Egs. (69)
as a function of { in order to find the stress distribution on the hole. To
perform these computations it was necessary to evaluate the functions
L(E, M), TpzM, p,0), T,,(M, 1, £), Tgg, 1,£), and Ty, (N, 1, £), given in inte-
gral form by Egs. (67) and (70), for a large number of combinations of the
appropriate arguments.

For any particular values of the arguments each of the desired inte-
00
grals was of the form F(v) dy. At first an attempt was made to approxi-

mate these integrals wigh the computer by truncating the interval (0,) to

the finite interval (0,7,), evaluating the integrands F(Y) at a number of values
of 7Y in this interval, and applying the trapezoidal rule. In other words, the
integrals over an infinite range were approximated by finite sums. However,
this proved not to be feasible because of the slow rates of convergence; the
contributions of the integrations over the range (Yo, ©) were too large to be
ignored unless very large values of ¥y were selected. These large values

of Yo would have required the consumption of an excessive amount of machine
time to evaluate the integrals for all the required combinations of the param-
eters. Moreover, an additional complication lay in significant losses in ac-
curacy due to the subtraction of almost equal quantities encountered in the
evaluation of some of the integrands.

The essence of the technique employed to overcome these integration
difficulties was to write for eachof the functions F(7y) the identity

f F(v)dv=f Fo(y) dvy +/ F(v) dv,
0 0 0

where
F(y) = F(¥) - F°(v).

Each of the functions F°(y) was constructed such that: (a) the quantity f‘('Y)
approached zero as ¥ became large much faster than the function F(Y) did,
» {o]

so that numerical evaluation of the integral f F(v) dy was practical; and
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(b) the integralf FO(V) dY was integrable in closed form. An insight into
0
the cause of some of the numerical difficulties was obtained when it was
(o]
found that some of the integrals F°(Y) dY were expressible in terms of

the sine integral, cosine integral,oand exponential integrals. These functions
are very difficult to compute from their integral definitions, and, indeed,
roundabout techniques are invariably employed in the standard computer sub-
routines for their evaluation.

Having in this way successfully evaluated the inner integral of the
double integrals formed by substituting Eqgs. (67) into Egs. (65) and Eqgs. (70)
into Eqs. (69), there remained the problem of the outer integrations. These,
for the most part, were quite straightforward; the infinite interval of inte-
gration was approximated by a finite interval and Simpson's rule was em-
ployed to compute the resulting proper integrals. The contributions of the
"tails" of the outer integrals proved to be significant when computing
stresses at points near the edge p = 1, £ = 0. With a knowledge of the
asymptotic behavior of D(n), these contributions were estimated and included
in the final results.

The reformulations of the functions L(£, n), Tzz(n, p, 0), and
o p s 8l ), g t6)) e Ghal) €) which were devised to facilitate their
numerical evaluation are discussed in Sects. B, C, and D, respectively.
These are followed by discussions of: the solution of the integral equation,
in E; the check of the solution, in F; the calculation of T,,(1, 6, £), Tgg(l, 6, €),
and Tez(l, 6, t), in G; and the calculation of uz(P, 6,0), in H.

B. Reformulation of the Kernel L(¢,7) of the Integral Equation

The kernel L(£, n) as defined in Eq. (67) is

e = 2 7o) s frin e ()¢ )] o) o) v}

where
F(v.a) = -OC'Yzfl(V)/A('Y)Z
Fo(v, @) = -2y K (y) £2(v)/8();

Fs(v,a) = -v3K3() £5(v)/ A0Y). (74)
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The function g is defined by Eqs. (58) and K by Eqs. (55), while f;, fz, f3
and A are defined in Eqs. (61). Figures 12 and 13 are graphs of K and A .
The parameter @, defined in terms of Poisson's ratio by Eqs. (12), is in-
cluded as an argument of the functions F';, F; and F3 for notational conven-
ience in the discussion that follows. Recall that f;(y) and A(y) by definition
depend on o as a parameter.

1000

-A (7)
2
100
Lt 4
1 | 1 | 1 | 1 | 1 10
0 2 4 6 8 10
T
Fig. 12. The Function K(y) Fig. 13. The Function A(’y)/yz for
Poisson's Ratios of 1/4
and 1/2.
Define
Fily,a) = -a; Fy,a) = -2ay+ 203

Fly,a) =v? + (1-a)¥y? +1(8a%- 16a +47) + (-4’ +12a% - 3a- 15),

and b5

Fitv.a) = Fjly,a) - Flly,a),  j = 1,2,3. (76)

0 . 5 . ’
The F. are identical to the terms in nonnegative powers of y which occur in
the asymptotic expansions* of the functions Fj. Consequently, asymptotic ex-

pansions of the functions Fj are given by

*See Appendix B, Sect. 8.
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Numerical values for the coefficients bj, for Poisson's ratios of 1/2 and
1/4 are given in Appendix B, Sect. 9. Figures 14-17 are graphs of Fj (y, 1),
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46

Fg('y, 1), and E~‘j(‘y, 1), j = 1,2,3. It is apparent from these figures that the
integrals in Eqgs. (73) should be much easier to evaluate numerically if the
Fj functions are replaced by the Fj functions.

By means of Egs. (73) and (76) we can write

L) = oo, n)+ L n v+ E€n w)l (78)

with

e = [ o) st o))t ) a(Z) s}
B = [ o) @t o [e(L) o) o0 (L) o) st
e = [ o) o) [s) o)) o vaE) o) ot o

(79)

The integral for L° can be integrated exactly in closed form, L is evaluated
approximately by numerical techniques, while T 5 closely approximated by
replacing the F; by their asymptotic expansions and integrating in closed

1
form.

1. Evaluation of L°(¢, n)

By means of Eqs. (58), the following identities are easily verified:

) - [ ]
o] o o) e
) = e &an[nzg(%)- ezg(%)] b (8 ) [T)4gz(%)+g4g2(%)].

(80)

We will also make use of the indefinite integrals*

*Empty sums are taken to be zero.
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m ! J 2]
/;Zm“g(%)dv 3 %(_I)mnzmﬂ l}og (2 +1?) + z (_Jll <%) le;

m 2 7) bt ('V) 1 m (Y ]
i (—— iy =iy, =)-=(m-1) | yPgl—)dy, m = 0,1,2, ..., (81)
f &\ = B\n/ 2 89

which can be checked by differentiation with respect to 7.

The substitution of Eqgs. (80) and (75) into the first of Eqs. (79)
and the use of the integrals (81) evaluated at the proper limits yield

E(2m) = -17—%(-40LS+360L2— llo - 15) &g—ﬂﬁ

7
(€ +n)’

+ 1l%(-40&+120&- 30 -15)

+50- o) 20 - 2ar(e, )

W

1 2 52772 2 2
+ 17 (8% - 16a+47) (—g;_—n;)z[ﬁ + 77 - 4F(8,M)]

+ B (g2 ) F(m) - €7, £ £ (82)
(€% -n?)

where

22
F(€,n) = &% _”T)Z log % (83)

Either letting £ = 7) in the first of Eqs. (79) and integrating, or applying
L'Hospital's Rule to Eq. (82), we have

i s ) D 3218(-20&“56@2-47& -75) 1

Z(-a)n+ = (84)

A 2
+48(8a - 640, +47) n* + e
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The quantity L°(€,n) is much larger than L(€, 7, yo) + £(£,7m, 7o) except for
small values of either £ or 7.

2. Evaluation of L(€, 7, o)

Two techniques were developed for numerically approximating
the integral in the second of Eqs. (79), the first being suitable for desk cal-
culation and the second for use with the IBM-704. Results obtained for some
combinations of £ and 7 by the first technique were used to check the valid-
ity of the computer program. The dividing point Y, between the ranges of
integration of L and L was taken equal to 10, since it was found that the
asymptotic expansions used for the FJ in the evaluation of £ were suffi-
ciently accurate for y =10,

The first technique consisted essentially in dividing the interval
(0, 10) into the subintervals (0, 1), (1, 2), (2, 4), (4, 6), and (6, 10), and fitting
polynomial approximations to each functionNI?j(y,OL) in each subinterval. In
order to fit the polynomials, the functions F; were calculated at a number
of points in each subinterval by use of Eqgs. (76), (75), (74), (55), (61), and
tabulated values of the modified Bessel function.!” A fourth-order polyno-
mial was fitted to each f‘l, ]:':2, and f‘3 in the interval (0,1). However, from
plots on log-log paper it was obvious that much better fits would be obtair:ed
for the other subintervals by fitting the fourth-order polynomials to ’y'ij
where m is an integer which depends on the particular subinterval and func-
tion being considered. The best value of m usually turned out to be the
closest integer to the slope on log-log paper of the straight line connecting
the endpoints of the function for the subinterval. Substitution of these ap-
proximations in place of the corresponding F; in the second of Egs. (79)
yielded integrals which could be evaluated in closed form for each subin-
terval in terms of explicit functions of £ and 7. The only special functions
which resulted were the logarithm and arc tangent, both of which are well
tabulated.!81?

The second technique was to divide the interval (0,10) into an
even number of equal subintervals and to evaluate the integrand at each
mesh point for the particular values of £, 7, and & being considered. Simp-
son's rule was applied to these values of the integrand, that is, it was as-
sumed that a parabola would be a good fit to each set of three consecutive
points. In the computer evaluation of L(£, 7)), subintervals of length 0.1 gave
adequate accuracy; the FORTRAN library subroutine was used to compute
the modified Bessel functions needed.

In comparison, the first technique is much superior to the sec-
ond for hand computations with a desk calculator. Computing the values of
the FJ and fitting the fourth-order polynomials to the ’Y'mFJ take a lot of
time, but this is only done once. Since the integration is done analytically,



the only numerical work remaining is to evaluate the resulting expression
for each combination of ¢ and 7 desired, taking advantage of the fact that
L(E,n) = L(n, €). Note that the functions g(y/£) and g(y/n) appearing in
Egs. (79) are not approximated. Since £ and 7 enter the integrand only
through these functions, the accuracy of the first technique should be essen-
tially independent of £ and 7. The only source of inaccuracy is in the poly-
nomial approximations to the F:; these approximations can be improved as
much as desired by decreasing the lengths of the subintervals and/or in-
creasing the number of terms in the polynomials. By means of the second
technique, however, although the values of the I::‘(V, @) can be computed once
and for all at each mesh point value of 7y, the functions g(v/ﬁ) and g(y/n) 2t
each mesh point must be computed for each combination of £ and 7, and a
separate numerical integration must be performed each time. Moreover,
the accuracy of the parabolic fits implied by the use of Simpson's rule will
vary with £ and 7. (In the first technique the polynomial fits are to the f‘j
functions alone; in the second, the parabolas are fitted to the entire
integrand.)

The reason for use of the second rather than the first technique
for the digital computer work was simply ease of programming. It was be-
lieved that any disadvantage in inaccuracy could be overcome by increasing
the number of subintervals. Incorporating the flexibility of a variable num-
ber of subintervals into the program for the second technique necessitates a
negligible amount of additional effort. It was feared that, for the small
length of subinterval required for reasonable accuracy, the computing time
necessary to evaluate numerically the integral for the 2850 combination of
£ and 7) might prove to be exorbitant, and hence necessitate the program-
ming of the first technique. This did not prove to be the case, however.

RS valuationiof i(&, 1 )

For ¥ =7, = 10, the asymptotic expansions for f‘l, f‘z, and 1?‘3,
indicated by Egs. (77) and discussed in Appendix B, Sect. 9, are sufficiently
accurate to warrant their use in the evaluation of I.. Substituting Eqgs. (77)
into the third of Eqgs. (79), we have

E(,.10) * D bym(@) f Tyl g2) av
10

+r§ b3m(a) f wv-ng(%) g (%) av. (85)

2
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We make use of the integrals

[y« i )

where

e 1)if1 2 i ('_.Ui x4 i o= -
szﬂ(x) = |z —log (1+X*)+ _ /R e e eR0g 2,

i=

( 1) i (‘1)1 XZl 1 o
sz(X) X arctan X + e PE G j 125 S el 4)

Using the Taylor series expansions for the logarithm and arc tangent* we
have

2 2i
Z ' x il ApRBIES (88)
= 21+m+1

The functions Hm(X) satisfy the differentiation formula
XHp(X) = -(m+1) Hy, (X) + g(X) (89)
and the recurrence relation

1

XHm42(X) = =77 - Hm(X), m = 12,3, ..... (90)

The relations (89) and (90) can be checked by use of the definitions (87) and
(58); the integrals (86) can be verified by differentiating with respect to Yo,
using Egs. (89), and noting that

g(X™1) = X% (x). (91)

*See Ref. 20, pp. 91 and 92.



By Egs. (80) and (86) we have, for £ 7( n,

) o) o = g (65 ) ()
L) s b @) s @) e - s (FZ{[im ekl
[imen @) o2
L) @) = v g n() - )
s el im0 () o8] 3 e (2 o2

Tl = N2 SRR (92)
By letting £ = 7 in the left side of Egs. (92) and integrating, or by applying

L'Hospital's rule to the right side of Egs. (92), we arrive at the integrals
corresponding to Egs. (92) for € = n:

- 1 n? n Yo
v mg(Z) ay = gper | m ) 3rmm(S) - o) |
./;0 g'(5) & =y |t DAz Hm (g ) -85

/Z zv-mgz(lﬁ) ay = :y;ﬁm |:(m+ 1)(m+3)%Hm<-3—o-)- (v 2 3 g( n) 2g (7)0)]

e 4V e Lo i (_77._)
f%v gt() o 4875n.l[(m+1><m+3>(m+5)\,5Hm 2

mesime) o)1 £8) o3
ek e N (93)

Substitution of Egs. (92), (93), and (77) into (85) yields

51



5172

N (mt+1) ban@) [z (£ )se2 n]
"& S (‘70—)+€Hm(_) Laa
(94)
and
N,
= Y (m+ 1) b (CL)
L(nn.Y) = - 1;2 F (Yo, @) g(—o) Tt —Zy—gn'ﬁll— 1= 08 (%)
m=1
N
Y ny o (m+3) bym(@)
20 F,(Vo, @) gz(—no‘> g(?o') zf v 21
m=i
Ne (m+1)(m+3) bym(a)
+777- z 4Vm+1 Hm (_%.)
mi=1 0

N3

Yo ~ 3(%) 2(70) (m +5) bam (@)
_T F;(’YO, G,) g ; —~ ? HZ::I —__—24y1‘;n-1

(m+3)(m+5) by (@)
4g8Yp-1

N
(m+1)(m+3)(m+5) bym(a) Gk
r; 48yt : Hm(%)' Ll
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In the program for the digital computer, the values of H, and
H, were calculated from Egs. (87), and the recurrence relation (90) em-
ployed for Hj, Hy, and so on. For arguments less than one, however, this
procedure would result in subtraction of almost equal number s,* the accuracy
in the value of Hy, decreasing with increasing m. Therefore, for arguments
in this range, the power series (88) for Hm was used instead of Egs. (87); in
the computer program, Hm was calculated from Egs. (88) for the largest odd
and even values of m, and then the recurrence relation (90) was used to find
the Hy, for lower values of the order m down to H, and H,.**

Figures 18, 19, and 20 are plots of L(¢, 1), found from (78), (82),
(84), (79), (94), and (95), for Poisson's ratios of 1/4 and 1/2.

L&)

Fig. 18. The Kernel L(€,n) as a Function of 7
for Various Values of £(v = 1/4)

*The terms from the finite sums in Eqs. (87) exactly cancel the leading
terms in the power series expansions for small x of the associated
logarithm and arc tangent.

**Note that proceeding in the other direction, i.e., finding H, and H, from
the series (88) and using Egs. (90) for higher values of m, would result
in great loss in accuracy due to subtraction of almost equal numbers.
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C. Reformulation of T,,(n, p, 0) Needed for the Check of the Solution

As discussed previously, the correctness of the solution of the
integral Eq. (65), and thereby the correctness of the solution of the entire
problem, will be verified if it can be shown that the boundary condition

'rl;z(p,e, t) = 2(2-a)7sP2 cos 20 on L = 0 (96)

is satisfied. From Egs. (69) we have that

TR, (0, 6, 0)

Tg cos 26 f D(N*Q,(, p)+ Tz, (M, p, 0)] dn. (97)
0

By Egs. (70)
8
e

Tzz(n 0, C) = 7 / [s(%) Faly, o, a“g‘(%) Fsly, p, a)} cos Yyt dv,
0
(98)
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where

Fylvp, o) = -%%{[(am) £,(V) +£4(V)] GOV, p) +K(Y) £2(¥) G' (v, P));

.YZ

2o 2K M) 72 - 4] () + 40t} Gl ) +K2() 15() G0, o).

(99)

Fs(y, p,) =

The functions K, g, A, f;, f3, f4, G, and G' are defined by Eqgs. (55), (58), (61),
and (68). Note that Poisson's ratio is involved in Egs. (98) through the
parameter a explicitly [see Egs. (12)] and also implicitly through A and fy.

In order to evaluate the integral in Egs. (98), we used much the same
procedure as in B above. To this end, define

ol
Fi(y,p,a) = P ZeVR(aa;ﬂ’ +ag);

1
o2 e-VR(

Il

Fi(v, p, ) asyy3tas ¥ tasY taso) (100)
with

R=p- 1, (101)
and

aglo,a) = -2aR;

ag(p, @) = 2a[1+aR +g(0) - pg1(e)];

as3(p, @) = R;

as(p, @) = -1+ (1-a) R - gi(p) +pgy(e)

asi(o, @)= a- 1 +3(8a%- 160 +47) R + (a-2) gi(p) + (1-a)pg(p)

- g2(p) + pga(p);
sl el) = %(-2a2+ 1200 - 15) + 4 (-4a2+12a%- 30 - 15) R
+3(-8a% +240, - 55) gy (p) +3(8a% - 160 +47) pg,(p)

+ (a-2) gz(p) + (1-a) pga(p) - gs(p) + pgslp): (102)
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In Eqs. (102) the gi(p) and gi(p) are coefficients in the asymptotic expansions
of G and G', and are given in Appendix B, Sect. 4.

By referring to Appendix B, Sect. 10, we see that Fg and F2, defined

in Egs. (100), are the leading terms in the asymptotic expansions of Fy and
Fs, respectively. Therefore, the functions

Fy(1,0,0) = Fylv, 0, @) - FY(V, 0, 4)
Fs(v, pa) = Fs(v, p,@) - Fiby, p, @) (103)

are much smaller than Fy and F5 at large values of 7, and are much easier
to integrate numerically. Consequently, we write

Tzz (M £0) = Tozz("’)y Oy =t Tzz(n,P, 0,%) (104)

with

el G )

_/ [ F4y,p,oc)+gz(>F57,Pva)]

= Bgn o YN 2 Y\ =
Tzz( £ 0,%0) = 73 g(;) Fy(vp, a)tg (T,) Fs(v, pa)| d

0 (105)
The integral expression for Tg,{7, p, 0) can be expressed in terms of stand-
ard special functions, while the integral for T;; (M, p, 0, ®) can be numerically
integrated much more easily than the original integral for T,, (7, p, 0) given
by Egs. (98).

1. Evaluation of TOZZ('O, p, 0)

The substitution of Eqs. (100) into the first of Eqgs. (105) yields

1 o 3 L)
8
a0 = 2] 3 e [ 3 [Tymef) R .
m=0 0 m=o o i
(106)

Define

RS AR T\
S :;f tmgn(;)e t at, myn = 0,172 5 (107)
0
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Then, by a change in the dummy variable, it is easily shown that
(o] ’y ml
f Vmgn(ﬁ-)e"YR diyi= ;R—I;,'Tl Qmn (MR ). (108)
0

Differentiating Eqs. (108) with respect to R and 7) yields the recurrence
relations

Qm+1,n(x) = an(x) G —r;XT—l Qll'nn(x)
and

Qm,n+1() = Qmn(x) - 2= Qfnn(x), (109)
respectively.* We have from Ref. 21, p. 135, that

Qo1 (x) = x[sin x Ci(x) - cos x si(x)]:

Q,(x) = -x%[cos x Ci(x)+sin x si(x)], (110)

where si(x) and Ci(x) are the sine and cosine integrals, respectively,
defined by**

00 .
silx) = -/ -SItLt at;
X
& s
Ci(x) = -/ ‘lts— dt. (111)
X

Using Eqgs. (109), (110), and (111), we find that

*Although the information will not be used here, it is perhaps interesting
to note the following properties of E T o)

() Qmolx) = 1 by the definition of the gamma function;

(b) Qan,n(x) = Qun-1,n+1(x) for 7 > 0, which can be proven by manipulation
of Egs. (107); and (c) (m +2) 'Qm+z,nx) = m!xQm,n-1(x) - Qmn (x)]-

**See, for instance, Ref. 15, p. 145.
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Qoz(x) = %[QOJ(X)"'QU(X)]i
Qup(x) = %Xz[l - Qo1 (%))
Qpa(x) = -i—xz[Qm(x)- Qi (%))

Qsz(x) = %XZ[QU(X)'QJZ(X)]- (112)

Figure 21 is a plot of the Qmn(x) in Egs. (110) and (112). Note that, by
Eqgs. (108) and (58),

e () = R R 0% (113)
and by the asymptotic expansions discussed in Appendix B, Sect. 11,

Qmn(®) = 1. (114)

_IIIIIIIIIIIIIIIII[T

Fig. 21

O (X)

The Function Qmn (x)
for Various m and n

Substituting Eqs. (108) into Eq. (106), we arrive at

HM“'

1
8 4
TS, (M, p,0) = [Z ~rFi 2am (02 @) Q1R ) +

m2 v | Lz, = S thd sz(nR)j‘-

moR

(115)
with the asm and asy, being given by Eqs. (102), and the Qmn by Egs. (110)
and (112). The computer evaluation of the Qu,(x) for large x is discussed

in Appendix B, Sect. 11.

2. Evaluation of "f'zz(”f), P, 0, @)

Since computer integration over an infinite range is impossible,
the approximation

Tazm 0, @ = T,5[n,p,0,%(0)] (116)
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will be made [see the second of Eqs. (105)]. It is apparent from (103), (100)
and (B-51) that the functions F4(y, p, @) and Fs(y, p, &) which appear in the
integrand of Ty, have the asymptotic expansions

f‘j(“/,P,a) A arlesy) z bjm(p, @) Y™, j = 4,5. (117)

m=1

Unless p is very close to unity, the exponential factor will cause 4 and s
to go to zero very rapidly with increasing . Therefore,* the approximation
(116) is a very good one. For p = 2, Y, was taken to be ten; for 1 = p < 2,
Yo(p) was taken large enough to make ¥4(v0,0, @) and Fs(yo, o, ) negligible.
The integrand was evaluated at 7 intervals of 0.1 and Simpson's rule applied
to these values in the computer program for T,z (", P, 0, Yo)-

D. Reformulation of Ty, (M, 1, £), Tgg(m, 1,¢£), and Tz, 1, ) Needed for the
Calculation of the Stress Distribution on the Hole

The nonzero stresses on the hole for the pure shear problem are
ng(l, ) lel) T%Q(l» h o) and’l'gz(l, 6, £). By Egs. (28) and (27) we have

Tee(lEit) = 75, (1, 0)+ TR, (1, 6, £) = 2(a-2) 75 cos 28 + TR, (1,8, L)

- £ R .
78, (1,6,8) = Thy(L 6) + 7B (1,6, £) = -475 cos 26 + Tgy(L 6 L)

(e R YRR R R e Lt (118)

By definition

8p = 78 +78 + 7oz (119)
so that

TR(1,6, ) = TRp(1,6,8) - TE,(1, 6, 8), (120)

since Tlrlr(l, 6, ) is zero by boundary condition (29). As the expression for

Dp is somewhat simpler than the expression for Tgp, it was decided to
calculate ng(l, 8, t), T%D(l, 6, t), and ng(l, 6, t), and then to find Tge(l’ 6, t)
from the first two of these by means of Egs. (120).

From Egs. (69) we have

*Note that by Eqgs. (58) g(V/'T)) O iene il 9/
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Tg cos 28

TR (l, 9! C) ki 3
ATDSDCos e “)_/ D(n)[%nae 7+ To(. 1 C)] "
0

9 (]
s f bt ™ 410,001 0] an o

R (1,6, "
T2 (L6 C) :/ D(n)[%n3(l+n5) o715 Tg C)] an,

Tg sin 26

in which the Wronskian formula*
Q.. 1) = 2/mn (122}

has been used. Referring to Egs. (70) we see that

I bl e —f [ Fyly, 1,a)tg (7)) Fs(Y, l,a)} cosyl dv;

Bom @ L C) =—/ [ F67 I, a)+p2 (Z))F}(V,l,a)] cas) SAd)

SN y sin FE
T, @M 1, L) = — [g— o (6,410 o Fq (%, 1,a):| avy
m ) (n) 5 (n) A Y i

where g(x) is defined by Eqgs. (58), Fu(Y, p,) and Fs5(Y, p, @) are defined by
Egs. (99), and

Fely, p,a) = -

Fi(v, pya) = - L G, P)

2
Fg(y, p, o) = :LA—M {alaf, (¥) +£4(W)] GOV, P)+K(W)[-£,(V) +4£,(¥)] G' (v, p));

pagy) -0 +4) £ +4af(] GO 0) +KEM(E5() - az (W] G (V. £)).

(124)

*See Eqs. (49) and Ref. 15, p. 79.



The functions K, 4, f,, f3, f4, G, and G' are defined in Egs. (55), (61), and (68).
Letting p = 1in Egs. (99) and (124) and using Egs. (68) we find

Faly 1,a) = - 22 o +2 +K ()] (W + 1400
Fy(v, 1,0) = - A%) (ot (y) + [KE(Y) + 2K(Y) - 7 - 4] 5500
Fely, o) = -2 ()
'yZ

F7(Fyr 1 (X) = -A—(—'Y) K(’y) f3(y);

ay?
Fo(¥, L, @) = 7(y) CKO)H(V)+4le +KO)] £0) +48,0)k
Fo(v, 1, ) = ?(—;—) {al4 - K2(¥)] £2(7) +[K3(Y) - ¥ - 4] £5(7)}- (125)

Proceeding as in Sects. B and C above, we define
B0 La) = Fj(n 1 a) - Fj0% La)h =45 ...9 (126)
where F? will be taken to be the terms in nonnegative powers of ¥ in the

asymptotic expansion for the corresponding Fj. Therefore, referring to
Appendix B, Sect. 12, the F? are defined as

j

F(v 1, a) = 204

Fi(v, 1,a) = «y% + (- 1)y +5(-20% + 120 - 15);
Foy, 1,a) = 204

FOfy, 1,a) = «y? + L(20- 1) v +%(-4a® +6a - 15);
F§(y, 1,a) = aly+5(-8a +5));

Fi(v 1,a) = 2(a- 1) Y2 + (-2a2 +3a) ¥V + 3 (4a®- 10a” - 3a). (11270)

Note that the first two of Eqs. (127) are equivalent to letting p = lin
Eqgs. (100).
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Substituting Eqs. (126) into Egs. (123), we have

Tuz 1, £) = Thaln 1, £) + Tag ol & ety

Tpph, 1, &) = Thpm, 1, £) + Tpp, 1, £, =)

Tgz(m 1, £) = T8z (. 1, £) + Tgz(n, 1, €, =), (128)
with
8 [~ ;
TS, (. 1,8) E——Z—/ [g(%) FI(Y, 1,0L)+gz(%—) F(v, l,a)] cos YC dv;
o
M, 1, L) E—— [ Fo(v, 1, a)+g (’;) oL a)] cos YL d¥
0 5 0 sin ‘YC_.
T8, 1, ¢ ) #3610y (L) F(r 1, 0) [ F2 =,
(129)
and
~ _8 (o[ (1= oY) = ]
R (e 1 0 ) = g ; B, a)te :7‘ Fs(y: L, 0)cos¥E d¥;
& J
= ST (R FAy = 1
TppM, L6 %) =73 g(n Fe(v, 1,a)+g (n) F.(%, 1,a) | cos Yt av;
o e
Yol (X\= ~ ] s
Toulm 1 L %) = /[g ()Fatn 1+ (E) By 1, )| 222 4y
R L {150}
The integrals in Egs. (129) can be eprressed in terms of standard functions.

Since by Appendix B, Sect. 13, the Fj are all proportional to Y~ ! for large 7,
the integrals in Egs. (130) are much’easier to evaluate by numerical tech-

niques than the original integrals in Eqs. (123).



1. Evaluationof T3z (0, 1, £), ThpM, 1, £), and T3z (n, 1, L)

Define the auxiliary functions

l [ee]
Smn(x) = }?/ tmgn (t;) sin(t-“;—”) dtye . m = 0elNe R el
0

e L (131)

2 {oe]
Crrmlbid)) = -7;/ tmgn(t;) cos (t-—”zm)dt; e e e
0

ol e gl SRR (132)

The factor 1/m! has been included in the definition of Smn(x) as it was in
that of Qmn(x) [see Egs. (107)] since thereby Smn(x) > 1and Qmn(x) > 1 as

X > o, as is shown in Appendix B, Sects. 11and 14. Including the same factor
in the definition of Cp,,(x) would create difficulties, however, since m! is
not defined for m = -1, whereas the integral in Egs. (132) does exist for this
value of m. Moreover, Cmn(x) does not possess an asymptotic expansion of
the same type as Smn(x) and Qmn(x), whose expansions are very similar in
appearance, and the inclusion of a l/m.' factor would not "normalize" the

large-argument behavior of Cmnp. Note that, for both Smn and Cmpn, m must

be less than 2n - 1 for the integrals to exist.
From the definitions (131) and (132) and integration by parts, it
can be shown that the functions Spp(x) satisfy the same recurrence rela-

tions (109) as Qmn(x), whereas the Cmn(x) satisfy the recurrence relations

Crmt1,n(x) = (m+1) Cmn(x) - ZEI R Gl
Cm,n+1(x) = Cmn(x) - - Cin (x)- (128

By changing the dummy variables in Egs. (131) and (132), it is
easily shown that

£ 1
/ Vmgn(‘};‘) [cos _r%7_r sin YL - sin n;ﬂ cos VC] da == C$+ S o D
0

=]
f Ymgn(%) [sin n;nT sin Y€ +cos rz'ncos 'YC] dv = —ZC,%:T G e))
0 (134)

63
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By Egs. (129), (127), and (134) we have

[ (-2a2 + 120 - 15)
an

18,001, 0) = 7 |7 Cut1)+g3 Caln )+ =557 Casln C)] + Bt st

TppM 1, 8) =

ERES

l:‘%‘a Cox(ﬂC)*‘Zl‘s Caz2(nt) + (ﬂf‘éﬂ) coz('ﬂg)] i é%}z%;_l) S12(n 0

18560 1,0) = 2| Lso - 50) . a(n 0+ 252 Coane) +5 (402 + 1002+ 30) c-x,z(no]

+%Z[Sm(nC)+ (-2a+3)soz(ng)]. i

The integrals for C_,,;(x) and Sp;(x) are given in Ref. 21, p. 65.

The expressions for the other combinations of m and n that are needed can be
obtained from use of the recurrence relations for Cmp and Smp- As a result,
we have

and

Coneqlbc = e X =2 0;
Colx)li=cniei™

Cn (62 = Sl A
Coz(x) = Ix(x+1) e™X;
Cefbd) S ey

Caalx) = 3x’(x-1) e7¥, (136)

Soi(x) = +x[e"* EX(x)+eX E,(x))
Sn(x) = 3x’[e"* E*(x) - eX E,(x));
Soz(x) = £[So1(x)+8S1:(x)]:

Siz(x) = +x*[Sey(x) - 1]. (137)

The exponential integrals E* and E; are defined in Ref. 15, p. 143:

E*(x)

00 et o L
-f e dt; E,(x) 5/ i dt. (138)
e 2
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Figures 22 and 23 are graphs of the Sy and Cmn functions listed in
Eqgs. (136) and (137).
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Fig. 22. The Function Smn(x) Fig. 23. The Function Cpp(x)
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Referring to the integrands in Egs. (121), we find from
Eqs. (128), (135), and (136) that

%n’(l 18 e M + Tzz(n 1,8) = %[4774C+(-Za2+ 120 - 15) 2t

+ (-20% +20a - 15) M) e~N& Jri—f‘c);—ls12 M8 + Ty, 1, & )

%n’ o=+ TppM, 1, &) = 2[2n*t +1(-4a2 +6a- 15) n*L

£y ‘*(——ﬂz";?}ﬂ SME) + Top™, 1, & =)

+%(-4oc2+22a— 15) 7] e'n
%nﬂg e Nt + T, 1,¢) = %T{[4n3c+ (402 +10a.+ 3) nt] et

4202 - 9a+1)(1-e~"E)} +7fT°g [Soi(n ) +(-2a+3) Seat)] + Tz L, €, ).
(139)

Since adequate computer subroutines for the exponential inte-
grals were not available, the Smn(x) were calculated from tabulated values
of E* and E;.?»?3 For the asymptotic expansion of Smn(x), see Appendix B,
Sect. 14. The terms in e-NC in Egs. (139) of course present no computa-
tional difficulties. The calculation of Tzz, TDD» and ng is discussed next.



2. Evaluation of ’Tzz(n, 1,¢, «), 'TDD(T): 15 ¢, sl and Tez(n, 1, ¢,

These integrals, defined in Egs. (130), were numerically evalu-
ated on the computer. The approximations

Tzz(n: 1, =) = Tzz["’): e Vo(t)] etc., (140)

for sufficiently large Yo, were made to make the computations feasible, i.e.,
the numerical integration was performed over the fini~te interva1~(0,70)
rather than the infinite interval (0, ©). The functions F, through Fg were
computed from Egs. (126), (125), and (127) for 0 =¥ = 10; for ¥ > 10 the
asymptotic expansions for Y5A0Y) fj(v, 1, ), g =4 i derived in Ap-
pendix B, Sect. 13, were used along with the expansion for ’y'SA(’Y) given by
(B-33). In this way the subtraction of almost equal members inherent in
evaluating the f‘j from the definition (126) for large ¥ was avoided. The
numerical integration was performed by use of Simpson's rule with in-
crements for 7Y of 0.1 in the interval 0 =7V =10 and of 0.2 in the interval
10 < ¥ = 100. The contribution of the integration over the interval

100 < 7y = 2000 was calculated for a few values of { and found to be neg-
ligible compared to the integration over 0 = ¥ =100, so Yo in Egs. (140)
was taken to be 100.

E. Numerical Solution of the Integral Equation for D(n)

The numerical evaluation of the kernel L(£,7) of the integral equa-
tion (65) has been discussed in Sect. B. In brief, for any combination of
£ and 7) the kernel L can be calculated by means of the computer through
the use of Eqs. (78), (79), (82), (84), (94), and (95); accordingly, L(E, M) will
be considered to be a (numerically) known function.

For convenience we repeat the integral Egs. (65):
8(2-a >
Dn) né¥ () = %+/ D(E) Llg, ) . (141)
o

Since by Egs. (58)

gfy/m) = 0at M= 0, (142)
it follows from Eqs. (67) that

1(&, 0)=10; (143)
from Egs. (66) and Ref. 13 (or see Appéndix A, Sect. 4), we have

ntY(n) = 64/m% at n = 0. (144)
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Hence, from Eqs. (141), (143), and (144)

D(0) = (2-a)m/8. (145)

It was decided to determine D(T)) numerically at an additional 75val-
ues of 7), denoted by 7, j = IeRZ (D = The Tj were taken to be as follows:

nj = 0.255 j = L2 .20

foom BiBi=5, . 5 = 2122, ... 30;

nj = j-20, j = 31,32 .40

My = 55-180, j = 41,42, ... 56

mj = 100j-5500, j = 57,58, ... 75 (146)

in other words, the interval (0, 5) was covered in steps of 0.25, the interval
(5, 10) in steps of 0.5, the interval (10, 20) in steps of 1, the interval (20, 100)
in steps of 5, and theinterval (100, 2000) in steps of 100.

{oe]
Simpson's rule was applied to evaluate the integralf D(e)L(g,nj)dﬁ
0

in Egs. (141), i.e., the integral was replaced by a weighted sum of the inte-
grand evaluated at various values of £. These values of £ were taken to

be the same as the values of 7) given in (146). Consequently, Egs. (141) was
approximated by

75
D(nj)nﬁ’Y(nj) SR, YooowlE I Diggh nlEymgh o S lidadt ity

7T o
e (147)

where the W(ﬁi) are the weighting factors appropriate to Simpson's rule.
Egs. (147) represent 75 simultaneous algebraic equations in the 75 unknowns
D(7m.). The solution of these 75 equations is a routine computer job, partic-
ularly as the diagonal terms of the resulting matrix-inversion problem are
large compared to the off-diagonal terms.

The function Y(nj) appearing in Egs. (147) and defined by Egs. (66)
was computed for 0 < nj = 10 using (A-8) along with the library subroutines
for the appropriate Bessel functions; for 7)j > 10 the asymptotic expansion
given in Appendix B, Sect. 2 was employed. Figure 24 is a graph of n*Y (7).
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The computer solution of the

& LA R R ] T] integral equation, which included the

o T evaluation of L(&, T)) of (78) for

= L 2850 combinations of (£, 1), the

= E -4 evaluation of Y(n) at 75 values of 7,
=
R ~] and the solution of the resultant

By — 75 simultaneous Eqgs. (147) took

& . ] slightly less than half an hour with

-~ F 4 the IBM-704 for each value of

= 8 — ] Poisson's ratio. An initial attempt

L —  to solve the integral equation through

o o Lo el B e B i direct evaluation of the definition (67)
I

(=]

of L took more computer time than
this for only 27 values of 7); (or
Fig. 24. The Function 7)2Y(7)) 378 combinations of €i and 7 ). More-
over, the values of L(£,7) obtained
using Egs. (67) were less accurate than those obtained by determining L
in the way discussed in Sect. B above.

Figures 2 and 3 are plots of D(n) and 1*D(7), respectively, for
Poisson's ratios of 1/4 and 1/2. From Fig. 3 we see that

D(n) ~ c(v) n* (148)
with

c(}) = 0.322;

c) = 1.260 (149)

approximately. The slight deviations away from this behavior for large 7
are probably due to truncating the numerical integration over 7 at 2000.

F. Numerical Check of the Boundary Condition on T,,(p, 6, 0)

With reference to the formulation of the pure shear problem, the only
boundary condition (20) which is not automatically satisfied for any suffi-
ciently well-behaved function D(7) is the condition that the normal stress on

the surface z = 0 must vanish. Expressed in terms of the residual problem
this becomes the condition given by Eqgs. (96).

From Egs. (97) and (104) we have

TR (0,6, 0) . ) , =
m = / D()n*Q.(n, pl+ Ty, (M, p. 0)+T,, (. p, 0, )] dn,
° (150)
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with Q; given by Eqs. (49), TS, by Egs. (115), and T,, by Eqs. (105). As
discussed in Sect. C.2 above, T,2M, p, 0, ®) will be approximated by
Tzz('r), 0, 0,%). We can then write

Baln00) (G :
Tg cos T f D(n)n*Q.m, p) + Tzz(T?v e 0)] dn
0
62 =
+f D(n) T,,(M, L, 0, V) dN +f D(n) 1t (n, p) dn
0 61

o3} 0 oG
+f D(n) T, (n, p, 0) dn +/ D(n) Ty, (M, p, 0, Yo) d7,
€1 €2 (151)

where €, and €; may depend on p in general.

The values of p at which the boundary condition was checked are
those listed in Tables I and II. Numerical integration based on Simpson's
rule was used to compute the first two integrals in Egs. (151 ForallNe
values €, was taken equal to 20; for 1 =p = 1.2, a value of 100 was taken
for € for p > 1.2, again a value of 20 was taken for €;. Thus we have

= N(p)
/lD(T))[n4Qz(T]: )RR, e, 0)fdn = f w(n;) D(;)[M] %, P+ TS, Mj. 0, 0)],
0 il (152)

with
il /=G b S o) SN (o) B= N0 SR SR 2

The asymptotic expansion derived in Appendix B, Sect. 3, was used to com-
pute Qz(n, p) for np > 20. The nj are those given by Egs. (146), the w(T)J) are
the appropriate weighting factors for Simpson's rule, and the D(’I)j) are the
results of the numerical solution of the integral equation. Similarly,

40

(2
/ D) Tya(np, 0,%) dn = Y. wln;) DO;) Toaly, 0,0, %) (153)
0 j=1

As p increases, the period of the oscillations of the function Q,(M, p)
becomes shorter, as may be seen in Fig. 25. The points 7j at which D(n)
were determined are too widely spaced to follow these oscillations, and the
sum in Egs. (152) is a very poor approximation of the integral when p is
large. Therefore, for p = 2, the quantity 77492(7% o) was calculated at 7
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intervals of 0.01. The function D(7) was estimated at the intermediate
values of 7 in each of the intervals (nj-y, Nidadico g =y &8, .. 39, by
passing a parabola through the known values D(T)j_l), ij), and D(nj+1)-
The trapezoidal rule was then applied to these small 7) intervals to

20
evaluate —/ D(n) n*Q, (M, p) dn.
0

72, (17, P)

Fig. 25. n§,(n, p) as a Function of 7
for Various Values of p

In the evaluation of the remaining three integrals in Eqs. (151), it
was assumed that the asymptotic representation (148) for D(n) was valid

for n > €, and 7 > €,. Since T, approaches a constant value for large 7,
it is easily shown that

fw D(n) Tz (M, p, 0, Yol dm SROEE (154)
€2

It was believed that the error introduced by neglecting this quantity would
be less than the error inherent in the numerical integrations.
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If €,R is large enough, * then, for 1 >€,, the quantities QmnMR)
appearing in the representation (115) for ng can be replaced by their
asymptotic expansions (see Appendix B, Sect. 11). In that case, since
D(n) ~ c(v) 7’)'4 for n > €, we can show that

fm D(n) T3z (n, p, 0) dn = O(gR)-3. (155)
€1

For most values of p at which the boundary condition was checked, the
quantity € R was large enough so that a) the asymptotic expansion for the
Qn were valid and b) the error introduced by neglecting the integral in
Egs. (155) would be no larger than the other errors in the numerical
procedure. The two values of p that are an exception to this are p = 1 and
p = 1.02. The estimation of the integral in Egs. (155) for p = 1 will be
discussed later. The integral was neglected for p = 1.02, although no
estimate was available for the error in doing so. Note from Tables I and II
that the deviations between the calculated and theoretical values of the
boundary stress are greatest at p = 1.02. This may well be due, not to
inaccuracy in the solution of the integral equation for D(mn), but to not taking
€) large enough in the stress calculation at p = 1.02.

Substituting the asymptotic expansion for Q,M, p), derived in Ap-
pendix B, Sect. 3, into the third integral in Egs. (151) and replacing D(n)
by its large argument behavior (148), we obtain

me(n)n‘*Q (n, p) dn :Zc_(v)/“"’ Mcos(T)R-ﬂ) dn (156)
2 ) mpymTl
& /B Je, tamo O 2

or, interchanging the order of integration and summation,

f D(n) n*Qz(n, p) dn = et z (5)m w“r;(f{) W (€R), (157)
€1

TP s &L

where

i
8
8\%
0
o]
w
e
ot
1
NI ]
S
Q.
o
5
I
=
o
o

W, (x) = (158)
From the definition (111) of the cosine integral, we have
Wo(x) = Cilx), (159)

*Recall that R = p - 1.
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whereas in general

e ] sm(x—%)
Wm(x) = Cilx) Z T 1,2, 8% (160)
= X

The relations (160) may be verified by substituting Egs. (158) for Wy (x) and
differentiating with respect to x. By means of tabulated values,? the con-
tribution (157) was evaluated for the required values of p and added to the
computer results for Eqs. (152) and (153). Only a few terms of the series
in Eqgs. (157) are needed since for small R the quantity R™M becomes very
small as R increases, while for larger R, taking into consideration the
values of €, that were chosen, the Wm(elR) become very small as m in-
creases. This is because the series subtracted from Ci(x) in Eqgs. (160) is
equal to the first m terms in the asymptotic expansion of Ci(x) (see Ap-
pendix B, Sect. 15).

At p = 1 the third and fourth integrals in Egs. (151) must be con-
sidered together since each individually blows up* at this value of p. In
Egs. (115) for TY, the terms with coefficients as; and as; are those which
upon substitution into the fourth integral in Eqgs. (151) produce nonzero

results for p = 1; from Egs. (157) and the footnote below, we see that in
the asymptotic expansion of {1, only the term corresponding to m = 0 will
be of interest, since the other terms contribute nothing at o = 1(R = 0).

Thus, retaining only the term in &j in the asymptotic expansion
(B-14), and the terms in as; and as, in Eqgs. (115), we will write, using
Eqgs. (148),

IR, €,) Ef D(n)[n*Qu(n, p)+ T3 ,(n, p, 0)] dn

€1
8c(v) [®|mwo(R) bas;3(p, a) Qi (MR)
- oS TRt e
et e 22 n°R

N 2as,(p, @) Q,MR) "

7R> (161)

at p = 1 (or R = 0). By Egs. (B-16), (102), (B-23), and (B-21)

*For instance, the leading term in Eqs. (157) is - e wo(R) Wole,R). By

ugvl

Eqgs. (159), (B-16) this becomes - —TCl( R), which blows upas R - 0
T

since Ci(x) -~ log x as x = 0.



wo(R) =l
as3 (Pva) = R;
ae(p ) = - 1I"+'O(R). (162)

The terms of order R in as, do not contribute anything to the integral in
Egs. (161) at p = 1 and so will be ignored. Substituting Egs. (162) and
the expressions for Qj; and Q;; from Egs. (112) and (110) into Egs. (161),
we obtain

R
4c(7/) / {Trcos R
IRYehi=—————— AL R S
YT mzaTiR e, L2

- 3R[cos NRCi(nR) + sin nRsinR)]
U (nZR - nl)[sin NRCi(NR) - cos nRsi(nR)]} dn (163)
at R = 0. Using integration by parts we can show that

IR, &) = 4c(v) {-%Ci(elR)u sin e RGIER )

m2J/1+R

=
in t Cilt
- 2 cos €;RsileR) - si(eR) Ci(eR) - 2/ E’Lttﬁ dt
€1R

+ €;R[cos €,RCi(e;R) +sin elei(elR)]}, (164)

which can be checked by differentiating with respect to €,. The integral* in
Egs. (164) is zero at R = 0; we have from Ref. 15, p. 146, that

si(x) = —;+ o(x);

Ci(x) = log x + O(1), as x — 0. (165)

Therefore, letting R = 0 in Eqgs. (164) yields

1(0, €,) = 4c(v)/m. (166)

This quantity was added to the computer results for Egs. (152) and (153) at
p = 1.
*See, for instance, Ref. 16, p. 161.

75
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It is interesting to observe that if we let R go to zero in Egs. (163)
before performing the integration, the integrand, and therefore the integral,
will be zero. Hence, there is a difference of ™ between a) the limit of the
integral as R goes to zero and b) the integral of the limit as R goes to
zero, i.e., denoting the integrand in Egs. (163) by £(n, R),

0

lim f(n, R) dn = m;
R—o
€1
o<}
lim f(n,R)|dn = 0. (167)
€ R—o0
1
This phenomenon is an indication of why it is difficult to get good numerical
results for the Tz stress on { = 0 near p = 1. The solution D(n) of the

integral equation is probably more accurate than can be concluded from the
check of the boundary condition, since part of the deviation reported in
Tables I and II is undoubtedly due to inaccuracies in the numerical compu-
tation of Tzz(p, 6, 0).

G. Numerical Calculations of the Stresses on the Surface of the Hole

The desired stresses are ng(l, 85 )} 789(1, 6,¢), and T%Z(l, 6,L). As
discussed in Sect. D above, these stress distributions are easily determined
from 7R, (1,6, £), TBp(1,6,¢), and TE,(1, 6, £). By Egs. (121), (139), and (140),

we can write

le{Z(l,G, t) _ £ €2
Tg cos 26 ~£ D(n) T,(m, €) dn +f D(N)[T.(M, &)
0
i fzz("')v 1, £Yo0)] dn +/ D(n) T,(n, &) an
€1
+/ D)Ta(n 8 +Top, 1,8, Ye) dm  * (168)
€

2

with
1
T gh 1) E?[4n4§+(-2a2+ 120 - _15)7)2?: +(-2a%+20a - 15) 0] e-")C;

T,0.t) = *‘(;z—gz"‘)slz(no, (169)
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where S); is given in Egs. (137). Similar relations hold for ’T%D and ngy
but, since the procedure for evaluating all three stress distributions is the
same, only Tz will be discussed in detail.

The stresses were evaluated for Poisson's ratios of 0.25 and 0.5 at

NN ON0 N0 05 0N 0.2, 1053, 054,705, 0.6 0.7, 0.8, 09, 1701808
NGO a0
(170)

The integration limit €; in Eqgs. (168) was taken to be 1900 for 0 = ¢ = 0.5
and to be 20 for £ > 0.5; for all ¢, €, was taken to be 20. The first two in-
tegrals in Egs. (168) were evaluated.by use of Simpson's rule applied at the
same 7j; as listed in Eqgs. (146). Thus

€1 N(&)
[P min e an = 37 winy) oy Tty €
0 =t

N(EE= 4 o =i ="005 N (&) =840, 05 )

and

(=
f - DM)[T,(M,E)+T,z(n 1, & Vo)l dn

40
= Y wij) DMyIT2np0) +T,, (M 1, &, Vo)) (172)
5=

The D(nj) are the numerical solutions to the integral equation for the appro-
priate Poisson's ratio, and the w(T}j) are the weighting factors for Simpson's

rule.

The last integral in Egs. (168) was neglected as it is O(e3?) for D(n)
behaving as in Egs. (148).

The third integral in Egs. (168) is also negligible unless £ is very
small. The first term in T,;(n, {) defined in Egs. (169) is the most signifi-
cant for large 1 and small €. We will write

f B(n) Ty(7, C)dn = 4;[& D(n) n*C e~1%dan (173)
= €,

1
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for n large and ¢ small. Replacing D(n) by c(v) 77* for €;, < n< » and
performing the integration, we obtain

fm D(n) Ty(n &) dn = 4clv) et (174)

m
€1

This quantity is negligible for the selected combinations of € and €, except
for £ = 0 when it is 4c/ﬁ [cf. Eq. (166)]. Note that the phenomenon dis-
cussed at the end of Sect. F above occurs here also, i.e., the integrand in
Eqgs. (173) is zero for £ = 0, so that performing the integration and then
evaluating at £ = 0 gives a different result than letting € = 0 and then doing
the integration.

2(4-a -€
Hor T%D the result corresponding to Eqgs. (174) is —(——ﬂ———) c(v) e lc,

whereas for ’rgz it is % c(v) tE,(e,t), where E, is the exponential integral
defined in Egs. (138).

The stress distributions on the surface of the hole are shown in
Eip s b: fand B,

H. Numerical Calculation of the Normal Displacement on the Bounding
Plane

The normal displacement on the plane { = 0 for the pure shear
problem is given by, using Egs. (28) and (27),

uS(p,6,0) = uP(p, ) + uB(p,6,0) = uwl(p, 6 0). (175)
From the third of Eqgs. (69) we have

2B (p,6 0)

275 cos 28 :f D()[-an’Q,(n, p) +U,p, 6, 0)] dn. (176)
0

Referring to Eqs. (70) we observe that*
Uz(n, p,0) = 0, (177)

so Egs. (176) reduce to

*See Ref. 14, p. 61.
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Z,uuz(p, 6,0) 00

ARG S 3

aTg cos 26 af D(n) 1’20, p) dn. (178)
0

This integral was evaluated in much the same way as the integral in
le{z(p,e, 0) containing the factor n*Q,(n, p), the integration in Egs. (178) being
somewhat simpler due to the more rapid decay of its integrand with increas-
ing 7. As discussed in Sect. F above, the infinite interval of integration was
truncated to the interval [0, €,(0)] and Simpson's rule applied to approximate
the integral by a finite sum. For p = 2, when the oscillations of (), become
too rapid to apply Simpson's rule directly to the values of D(n) computed in’
the solution of the integral equation, parabolic interpolation was used to find
D(n) at n intervals of 0.01. Figure 7 is a graph of us(p, 6, 0).
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Appendix A. Bessel Functions and Related Functions

1. Definitions

III. APPENDICES

The functions Jp(x) and Y,(x) are the Bessel functions of the first
and second kinds of order n, while K, (x) is the modified Bessel function of
the second kind of order n.'*’!®> The following expressions define related

auxiliary functions which occur frequently in the text:

Tix) = d{jix),

Y(x) = dY;Ex),

Kj(x) = chff‘)

K(x) = xKp(x)/Kq(x).

Qaly.p) = Yi(v) Talyp) - J2(¥) Yaolvp);

Qa(y.p) = Yaly) Jo(yp) - Jaly) Yalyp);

Q3(y,p) = Ya(v) J2ve) - Jov) Yolvp).

Y(x) =

G(v,.p)

[T + [Ya(x)]%

= Kp(y P)/KZ(V);

G'(y,p) = pKa(v p)/Ki(Y).

f1(y) =

f(y) =

£3(y)

g
2
I}

Figures 12, 13, 24, and 25 show K, A, Y, and ,, respectively.

YA y2+4-K3(y)] + 30K3(y);
2 - (v2+3) K(y);

(YE+2)(v¥+ 6) - 27 K(Yy);

(Y2+3)(y2+4) - v2K(y) - af(y) + 3aK(y);

= [y2+4-K¥y)] f5(y) + a[-4y*+8(y2+3) K(y)

- vEK3(y) - 6K3(y)].

-

(A-1)

(A-2)

(A-3)

(A-4)

(A=5)

(A-6)



2. Recurrence Relations

3.

13,15

xT(x) = 271(x) - xJo(x);
xY,(x) = 2Y;(x) - xY,(x);
xKy(x) = 2Ky(x) + xKo(x).
®Ta(x) = (%% - 4) J1(x) + 2xTo(x);
x*Y3(x) = (x*-4) Yi(x) + 2xYo(x);

x%K,(x) = -(x%+4) Ky(x) - 2xKq(x).

Differentiation Formulas

of(yp)  df(x)

ap 'Y dx

x = yp

Filyp) _ 2 8100

d p? ax* lx = yp
‘m—dif—) = Kp(x);
dz‘d{;ﬁ’“ = (1) e - 2K
%[%Kz(x)] - L iy + K30
j_;l}x ( )] - (—i+;%) Ka() - S K3()
0 114 -2

[« N
><|°‘
% ="
N
S
L
e}
n
P
|
P
S—
e
Bk
LS
1
-
pSi
L
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(A-7)

> (A-8)

L (A-10)
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Q2(y, 1) = ?27;*
Qa(y.1) = 0;
(A-16)
%,if‘o [VQz(v,p)] =—71T'-(,02+—2);

Lim [V"‘Qé(v : p)] -Z (p g —1—),

Gy = 15 1

L (A-17)

G'(0,p) = lim G'(y,p)
Y0

1}
‘ole

h h
n -
e
o o
==
1) 0]
o —
¥ [\S)
9

e
w
—
(=}
~
]
=
o

L (A-18)

*See Ref. 15, p. 79, No. 28.
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Appendix B. Asymptotic Expansions

In this Appendix are listed the asymptotic expansions, valid for
large values of the argument, which are needed for the numerical compu-
tations and accompanying analysis. In order to indicate the numerical
accuracy of the expansion for a function, say f(x), the notation

£(10) = 3.141593 ~ 3.141576 (B-1)
will be used to indicate that f(10) found by substituting tabulated values into
the definition of f is 3.141593, while the listed expansion gives 3.141576 for

x = 10. In general, the value of x for which the comparison is made is the
smallest for which the expansion is used in the numerical computations.

1. Bessel Functions K,(x), Ky(x), J,(x), J3(x), Y,(x), and Y;(x)

From Ref. 17, p. XXXIV, we have, after some rearrangement,

3
o \¥2 _ km
Ky(x) ~ (E) et mzo e
. (B-2)
1/2 k;
Ki(x) ~ - L B s
& (Zx) T I )
1/2 Ko 3
560 ~ ()7 ) T2 cos fmlx)
S
. 2\2 N km
736 ~ () mz 2 in ()
> (B-3)
1/2 k
Y,(x) ~ (ix) I im B (3)s
Al
1 2 1/2 k;n
130 ~ () ), = cos fmlx),
T i
with
Bm(x) = x +mTTT - %T, (B-4)



and

ko

1=
=9

(16 - 12)(16 - 32) «-- [16 - (2m - 1)?]

m! 2™

1;

m = 1,2,3, oataiy

(16 - 12)(16 - 32) -+- [16 - (2m - 3)2](15 + 4m?)

1 3im
i7oyy (2

It can be easily seen from Egs. (B-5) that

km

L ias (5-2m)(3 +2m)

8m

15 + 4m?

8m ¥ ~4s

Using Egs. (B-6), we have

k
k,
ks
ky
k5
kg
kg

k;
k3
kj
ks
ke

ky

2EAE) = LLEE

km-13

m = 12,3, .. .

2R L(105)=20:82031725;
ST MEE) = =0 B0

23 (0.0,3095)8=N031723022;
-2718(135,135) = -0.51549911;

P (e 2 a)l 20—

-2725(103,378,2175)

2 (1o =7 237 55

1.1276543;
= -3.0809127;

2-7(465) = 3.6328125;
271%1785) = 1.7431641;
-2715(24,885) = -0.75942993;
2-18(239,085) = 0.91203690;

|

B i (7 625155
27%5(142,567,425)

-1.7075908;
= 4.2488404.

)

T =188 3 R

(B-5)

(B-6)

(B-7)
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By Egs. (B-2) and (B-7), and Ref. 17,
e!® K,(10) = 0.47378525 ~ 0.47378522;
e'® K3(10) = -0.50552362 ~-0.50552366. (B-8)

2 ¥(x)

From Ref. 17, p. XXXIV, we have

= 1 2z 1 2 ~Z_ Z Y2m 2
Y(x) = [Jp(x)]* + [Y3(x)] = 1+ _ 2m ) (B-9)
m=1
with
LR -3 ... (2m-3) (16-1%)(16-32) ---[16 - (2m - 3)?][16 - (2m +1)(2m - 1)?].
Nem = = m! 23m
(B-10)
Therefore,
e (18— B2
v =2 (@35 =3 308137 5
Vieh= 2= J(1l6;695) = 06l 303711
abe=2F (2500801R50 =" ~ 61283112, (B=1.1)
and
Y(10) = 0.062650098 ~ 0.062650104. (B-12)
3' Qz(nnp)
Define
R=p-1. (B-13)

Substituting Eqs. (B-3) into the definition (A-3) of Q,(7, p) and grouping to-
gether like powers of 7), we arrive at

Q 5 = ! J ¥ _ 1 ; ). 2 Z UJm(R) mTT
{n,) = i) 32 p) - 3 il ) - ﬁmz T cos -y

(B-14)



with
om®) = 3 (1P (1 +R)™ kgkp, . (B-15)
j=o

The result of putting ky, and ky, from Egs. (B-7) into Eq. (B-15) is

wo(R) = 1;

w,(R) = 273(4+19R);

WSRO =2 5R ) (248 IR )5

ws(R) = 271%(15)(-192 - 440R - 108R*+ 119R?);

wy(R) = -2715(315R)(640 + 1184R + 656R* + T9R?);
ws(R) = 2-18(315)(5120 + 14,592R + 19,200R? + 13,520R>

+4980R*+ 759R%);
wy(R) = 2722(945R)(71,680 +193,920R + 236, 160R? + 154,400R>
+53,064R*+ 7579R5);
OB RA)E— 2'25(4725)(114,688+424,960R+1,042,944RZ+1,561,216R3
+1,422,016R*+775,368R5+233,948R®+30,173R7). (B-16)
For example,

Q,(10,1.2) = -0.019640844 ~ -0.019640851. (B-17)

4. G(y, p) and G'(v, p)

The asymptotic expansions in y for G(y, p) and G'(V, p), defined by
Egs. (A-5), can be found from Egs. (B-2) by dividing the expansions for
K,(yp) and Kj(yp) by those for K,(y) and K,(v), respectively. In general, if

N e
L (B-18)
m=1 1+ z o
m=1

where the B, and ¥y are known and the O, are to be found, then it is easily
verified that
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Gl R =
-1
B s Wt e “i Vmego W= 234 e (B-19)
1

In particular, if

Bm = ymp™™, )
then
a; = -YiRy; L (B-20)
m-1
Om = -YmRm - Yj%m-j»
1T J
where
By = (72 - 1)/p™, (B-21)
If we let

1
Glv,p) ~ pV? e'VR[l + Y Bml) Y ];

m=1

G'(y, p) ~ pV* e R [l +

I

gm(p) v'm]. (B-22)
%

then by Egs. (A-5), (B-2), (B-7), (B-18), (B-20), and (B-22),

g1 = -273(15) Ry;
2. = 2 "[15)(30R, - TR,);
g3 = it

2719%(45)(-115R, +35R, + 7R;);

iy S 15(4 5)(4380R, - 1610R, - 420R - 231R,);
(
(

85 = iy
g6 = 27%%(675)(10314R, - 14833R, - 6132R, - 5313R4 - 6006R - 7007R);
g7 = 27%%(2025)(144,885R, +12,033R, +14,833R; + 16,863R,

+23,023R5+35,035R¢+51,051R,), (B-23)

135)(-10595R + 5110R,+1610R;+1155R,+1001R;);



and

g1 = -27%(19) Ry;

gy = 277(722R, - 465R;);

gs = 271°(-4883R, +8835R, - 1785R;);

gh = 2715(-164,692R, - 239,010R, +135,660R 3 +24,885R);

= 2'15(4,619,983R1—2,015,310R2-917,490R3—472,815R4-Z39,085R5);

gb = 27%%(-37,060,754R; +113,068,005R, - 15,472,380R; +6,395,445R,
+9,085,230R5 +7,162,155R,);

gy = 27%%(-1,580,376,319R, - 453,506,595R, +434,035,245R;
+53,925,795R, - 61,444,845R 5 - 136,080,945R - 142,567,425R ).

(B-24)
By the above and Ref. 17,
e!° G(10,2) = 0.64815743 ~ 0.64815763;
el (o N=N1125072 00 SHNS2507196. (B-25)

5. K(y) and Related Functions

In Ref. 24, pp. 6 and 10, the asymptotic expansion for K(y) is found
to be

K(y) ~ -y - -;—+ basya (B-26)

with

b :%(-l)m[mbm_l-(bm_zb1+bm_3b2+...+b1bm-z)],

m = 3,4,5, ... . (B-27)
Therefore, we have
Bl ey 2 B vt < 27T(135) vt - 2R (es) vt

+ 271%(7425) y~5-27%(675) y~¢ + 2715(1,905,525) s (B-28)
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By the appropriate multiplication of series, we obtain

and

K2(y) ~y2 + v+ 4 - 273(15) vy~ + 27%(15) y% - 277(405) y~*

- 273(45) y~% + 2719(37,125) y~5 = 27%2025)y°

Ki(y) = =% < 27Y3) v ~273(51) vi= 278 = 2°7(1215) Vih £ 27%315) 5"

SR 55 ) R TR s ey p =l (n TR A B RDE e

From the above relations and tabular values, it is found that

K(10) = -10.6698894 ~ -10.6698881;
K2(10) = 113.846540 ~ 113.846509;
-1214.72999 ~ -1214.72988.

=
w
e
=
o
=
1

6. fi(y), £2(v), £5(v), and f4(y)

By Egs. (A-6), (B-28), and (B-29),

(B-29)

(B-30)

f1(y) ~ -y* + 3ay? + 273(240+15)y + 27%(48x - 15) + 27 7(-720a. + 405) y!

By P2 A3 A 253(39)y =2 72(3) 2 U(BR5)i ) = 2 (135 )y e

£50y) ~y* + 2y + 9v2 + 273(15) ¥ + 27%(33) + 278135) y~! + 27%4(45) y°2

+ 273(90a.+45) y~% - 27199720 +37,125) ¥y~3 + 27%4(-270a + 2025) ¥4

2 L9(4185) 72+ 254(40B) =4 = 2715(2,618,325) V>;

2-7(7425) y=° + 27%4(675) v~ * - 27'%(1,905,525) ¥~5;

fa(y) ~y* + (ca+1) y® + 273(-3a+15)y% + 273(-63a+15) v + 273(-9a + 81)

and

£,(10
£,(10
£5(10
£4(10

S O S

+

&

"

277(-1575a.+135) y~! + 275(315a+45) Y2 + 271°(945a - 7425) 3

27%(-945a+ 675) y™* + 271%(3,331,125a - 1,905,525) ~y~5,

-984.6540 + 341.5396a ~ -984.6509 + 341.53880q;
1198.99861 ~ 1198.99843; .

12945.97788 ~ 12945,97763;

11778.98894 - 1231.00828a ~11778.98881 - 1231.00805a.,

(B-31)

(B-32)



7. Aly) and -y°/Aly)

From Egs. (A-6), (B-28), (B-29), and (B-31), we have

Aly) ~¥o[-1-(a+2) vyt - 273(24a+57) y~2 - 27%(12a+15) ¥~*
+277(144a+549) y~* - 273(135) y5 + 271%(6840a+2115) ¥~
+27%(-315a+1665) y77]. (B-33)

Application of Egs. (B-18) and (B-19) to Eq. (B-33) yields

A 27: Sml@) y-m, (B-34)

with
5, = -(a+2);
a8 =92 %°(8u? 80 - 25);
65 = 272%(-403 + 450+ 67);
8, = 277(128a*- 1280° - 2352a% - 3344a + 71);
85 = 27%(-16a°+320a% +392a° + 34007 - 12740 - 2147);
8¢ = 271°(10240 - 3072a° - 30,3360* - 320008 +223,3200°
+419,6400.+229,399);
6, = 278(-64a7 + 25605+ 216005 - 1744a* - 25,3160’ - 39,8160
+2411a+46,750). (B-35)
Recall from Eq. (12) that

(04

I

2(1 = ), (B-36)

where v is Poisson's ratio. Thus Poisson's ratios of 1/2 and 1/4 corres-
pond to values of @ of 1 and 3/2, respectively. For @ = 1, from Egs. (B-34)
and (B-35) we have that

5
- %(W el o3yt 2 %0}y ? + 27y - 277(5625) vt - 27%(2673) o

e (886 75)lya S - 27 °(15,363) v, (B-37)

89
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whereas for a = 3/2
= w1~ 27Y7) T 273(5) TR 27 (1R 1) R (O ey
m ( )Y (B ( )Y ( 7Y,

- 2-5(3859) y~5 + 271%(1,185,289) vy~ ¢ - 274(115,265) y~7. (B-38)

By tabular values and the above expansions we have

A(10) = -127,473.09 - 13,288.2630 ~ -127,472.74 - 13,288.279a;  (B-39)
for a =1
-105/A(10) = 0.710422 ~ 0.710478
and for a = 3/2 (B-40)
-10°/A(10) = 0.678401 ~ 0.678443.

8. Fy(y,a), Fa(y, @), and Fs(y,a)

By definition [see Eqgs. (74)],

2
Fify,a) = - Z_’(yy—) £,(v);
Fiv.a) = - 35 K0y) )
Fily,a) = - ZV(;—)KZ(V) £5(y). (B-41)

The expansion for f,(y) is given in Eqs. (B-31); by Egs. (61) we have

Y2K(y) - (v2+3) K3 (y);

K(y) f2(y)

K%(y) £5(y) = (v3+2)(y?*+6) K3(y) - 2v2K3(V), (B-42)
so that, using Eqs. (B-28) and (B-29),
K(y) £2y) ~ -v* - 2y® - 27}(15) ¥ - 3y - 273(111) + 274(495) vy}
- 27%(225) y7% - 278(4995) y7? + 275(3915) Y4
K2(y) £3(y) ~ ¥ + 3y° + 157* + 273(151) ¥® + 48Y2 + 277(1641) ¥ + 27%(843)

- 271%(8325) vyt - 273(405) vy "2, (B-43)



By tabular values and Egs. (B-43)

K(10) £,(10) = -12,793.1825 ~ -12,793.1792
and (B-44)

K%(10) £5(10) = 1,473,854.79 ~ 1,473,854.57.

The leading terms in the expansions for F,, F,, and F; are found
from the substitution of Eqs. (B-31), (B-43), (B-34), and (B-35) into (B-41).
They are given by

Fily,a) ~ -a + 2a(2a +1) y! +a(-4a? - 4a+5) y7%

Fo(y,a) ~ -20y + 202 + 2 2a(-8a2 + 8- 3) v}

Fa(y,0) ~y® + (-a+1) ¥ + 273(802 - 160+ 47) ¥ + 27%(-4a’ + 120% - 30.- 15)

+277(128a% - 512a° - 43202 + 480a +1815) Y~ L. (B-45)

9. Fi(y,a), Fyly,a), and Fs(y, a)

From Egs. (74), (75), and (76), (B-31), (B-43), (B-37), and (B-38), we
find that

N‘
fj('y, a) ~ i bjm(a) v"™, j = 1,2,3, (B-46)
m=1

where the bjm(ot) are given in Table B-I for Poisson's ratios of 1/2. and
1/4 (a = 1 and 3/2). We have

151, 1)) = 0, Gz

l

0.543155;

I 1) = =0 1T

l

-0.17771;

F4(10,1) = 0.8093 ~ 0.8181;

?

¥,(10,3/2) = 1.019342 ~ 1.019428;

F,(10,3/2) = -0.53672 ~ -0.53764;

0.1143 ~ 0.1218. (B-47)

(]

#,5(10,3/2)
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TABLE B-1. The Coefficients bj.,, in the Asymptotic Expansions for F,, F,, and F

Bh= /2 o= W= 1/ an=raye
m bim bam bsm bim bzm bsm
ikl -3/4 1479/128 12 -27/8 483/128
ailes 21/ -741/16 -15 -99/4 -1443/32
3 | -147/4 -831/64 129,687/1024 | -213/4 3735/128 235,701/1024
4 | 369/4 1683/8 -549/64 1959/8 10,053/32 -2781/8
5 | 11,637/64 | -225,051/512 33/2 -1,421,343/1024
6 | -22,455/16 | -12,519/16 -22,809/8 | 20,691/32
7 | 58,141/512 38,081/512
8 | 38,907/4 70,521/8

10. Fy(y, p, @) and Fs(y, p, @)

The functions F, and F; are defined in Egs. (99) as

Fyv,p, @) = - ZA%;{[(CH 2) £,(v) +£,()] G(v, p) +K(y) £2(v) G'(v, P}
Fs(y,p,0) = - %[{[ZKM-VZ - 4] £5(v) + 4a£,(v)} Glv,p) + K2(Y) £(v) G'(v, p)]-

(B-48)

The expansions for K(y) f,(y) and K*(y) f5(y) are given by Egs. (B-43). By
means of Egs. (B-31), (B-28), and (B-29), it can be shown that

(a+2) £5(v) + £4(v) ~ v+ 3> + 271(21) v + 273(-240+93) v + 273(-12a + 75)
+277(-7200+1845) y~! + 275(180a - 225) y~?
+271%(-32400,- 15,795) y~3 + 275(-1350.+ 2295) ™4
+2°13(712,8000. - 7,142,175) v~5;

[2K(y) -¥? - 4] £5(7) + dafy(v) = -(v2+2)(y2 +4)(¥2+6) + 4ly*+6v% +6) K(v)

- 4K(y) + 4af(y) ~ -y® - 495 - 18yt
+2°1(8a-71) ¥ + 27Y(12a- 129) y?

+ 2‘5(624q- 2103) v + 273(-12a - 285)

+ 27868400 - 7335) y~! + 273(-1350a - 405) y~2

+2713(-133,920a +1,935,765) y~3. (B-49)
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By tabulated values and Egs. (B-49), we have, for a = 1,

3£,(10) + £,(10) = 14,144.97649 ~ 14,144.97604;

[2K(10) - 104] £5(10) + 4£,(10) = 1,617,850.008 ~ 1,617,849.961. (B-50)

The leading terms in the asymptotic expansions of F, and Fy are

found by substituting from Eqgs. (B-43), (B-49), (B-34), (B-35), and (B-22)

into Eq. (B-48). This results in

Fyly, p, ) ~ 20072 e YR {-Ry+[1 +aR +g,(p) - pei(p)]
+[-o+1+27%(-8a*+8a-3) R + (-a+1) g(p)
+apgi(p) + ga(p) - pea(P] v}

Foly, p o) ~ p~Z e VR{RY +[-1+(-a+1) R - gy(0) + pgi()] ¥

+[o-1+273(8a%- 16a +47) R+ (a-2) g(p)

+(-a+1) pgi(p) - g2(p) + pega(p)] ¥

+[27Y(-202 + 120 - 15) + 27%(-40a® + 1202 - 3a - 15)iR!

+273(-8a2 +24a. - 55) gi(p) +27%(8a% - 16a.+47) pg1(P)

+ (- 2) galp) +(-a + 1) pga(p) - g3(p) + pe3(p)]

+[273(8a® - 5602 + 30.+75) +277(1280* - 5120 - 43207 +4800+1815) R

+273(403 - 1602 + 270 - 15) gy(p) +272(-4’ + 12a% - 3a.- 15) pgi(p)

+273(-802 +24a- 55) gy(p) +273(8a? - 16a +47) pgz(p) + (- 2) gs(p)

+(-a+1) pgi(p) - galp) +peal) Y7}, (B-51)

where the g;(p) and gj(p) are given by Egs. (B-23) and (B-24), and R by
Eq. (B-13).

In Eq. (107), Qmp is defined as

[o¢]
1 t
Qmnlx) = 'nT/ tmgn%) e-t dt, Fim = Oy2, 25 sen (B-52)
0
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The asymptotic expansion for Qmn(x) can be obtained by writing [see Eq. (58)
and Ref. 20, p. 88, #748]

:(tztzxz>n
S i alt)y N oo bWl EE R S

L] > beds (B-53)

o
=]
ga——
% |
S—"
I

Substituting Eq. (B-53) into Eq. (B-52) and integrating term by term, using
o0
f tmtzk o=t gt = (m+2k)! (B-54)
0

from Ref. 20, p. 63, #493, we have

Q

n(m+2)! n@n+1)(m+4)! (-1)k (ntk-1)! (m+2k)!

()i v
) m! x? 2m! x* (n-1)!k! m!x2k

mn

(B-55)
The same expansion is obtained for the combinations of m and n needed for
this problem if the asymptotic expansion for the sine integral and cosine in-
tegral from Ref. 22 are used together with Eqs. (110) and (112).

If we write

(-1)K(n+k-1)!(m+2k)!

Ak = AR im0 = 0502 Siekn o b e TS0 S
(B-56)
then Eq. (B-55) becomes
I ()
Qo) ~ ) Gmmkx ™, m = 01,2, . n=1,23 .. (B-57)
k=0

where N . (x) is the highest value of k for which |ank x'?‘kl is monoton-
ically decreasing with increasing k. For purposes of numerical computa-
tion it is convenient to rewrite Eq. (B-56) as

Amnk = -(1/k)(n+k-1)(m+2k){m +2k - 1) S katd

Do ki =R 051 GRSt e = T P E S (B-58)
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By Egs. (B-58), we see that Nmn(x) is equal to the largest value of k for
which

(n+k-1)(m+2k)(m+2k-1)/kx? = 1. (B-59)

It is apparent from the relation (B-59) that the larger that m and n are,
the smaller will be the number of valid terms which can be retained in the
corresponding asymptotic expansion for a given x. For instance,

Nj; (11) = 3, so that Q;,(11) would have only four terms (IcE =2 05127 3) Sinwits
asymptotic expansion. By making use of Refs. 22 and 25, and Egs. (110),
(112), (B-57), (B-58), and (B-59), we have, for the combinations of m and
n which are needed

Qu(11) = 0.9848192 ~ 0.9847521, Ny (11) = 5
0,,(11) = 0.956721 ~ 0.955918, Ny, (11) = 5;
Qps(11) = 0.9707702 ~ 0.9703352,  Ngy(11) = 5;
0,,(11) = 0.918438 ~ 0.922499, Nyp(11) = 4
0,,(11) = 0.84997 ~ 0.87222, N (11) = 4;
Q,(11) = 0.77205 ~ 0.70498, Ni(11) = 3. (B-60)

In the numerical check of the boundary condition discussed in Part II,
an(x) must be computed for a wide range of values of x. The Fortran
library subroutine ARCSI1 for the sine integral and cosine integral was used
with some modifications in the calculation of Qmn(x) for small x [see
Egs. (110) and (112)]. In ARCSII the range of x is broken into three regions:
0=x<1,1=x< 18, and 18 = x, For 0=x< 1, power series are used to
compute si(x) and Ci(x); for 1 = x < 18, empirically determined ratios of
fourth-order polynomials are used; and for x = 18, asymptotic expansions
are employed.

In the program written for this problem, for 0 = x < 1, ARCSII was
used to compute si(x) and Ci(x). These results were then substituted into
Eqgs. (110) to find Q(x) and Qy;(x), and finally Qg and Q;; were substituted
into Eqs. (112) in order to calculate Qo Qiz) Qzz: and Qs.

For x = 18, however, following this same procedure would lead to
difficulties. The asymptotic expansion employed in ARCSII when substituted
into Eqs. (110) yields exactly the same expansion as Egs. (B-57) for Qo and
Q,. Substitution of these values into Egs. (112) would result in a significant
loss in accuracy in the calculated values of Q;, Qa2 and Qs, since for large
%, both Qp and Q,; are very close to unity; evaluation of Egs. (112) for Q,,
Q,,, and Qz; would thus mean multiplying a large number, %%, times a small
number, obtained by subtracting two almost equal quantities, to yield values
close to unity but having few significant figures. Therefore, the expansion
(B-57) was used for all the combinations of m and n.
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In the intermediate range, 1 = x < 18, it was found that the use of
ARCSII to compute si(x) and Ci(x), followed by substitutions into Egs. (110)
and (112), yielded sufficiently accurate results for 1 = x < 11, but for
11 = x < 18, a serious loss in the number of significant figures in the com-
puted values of Qj,, Q;;, and Qj;, was encountered. This was due to the same
phenomenon as was discussed above for x = 18, i.e., the subtraction of al-
most equal quantities in Eqs. (112) due to the Q,, being close to unity in
value, An attempt was made to use the asymptotic expansion (B-57) in the
range 11 = x < 18, but as can be observed from Eqs. (B-60), this did not
give very satisfactory results in this range, particularly for Q,, and Qs,.

Because of the (-1)K factor in qmpk defined in Eq. (B-56) the values
of the sum in Eq. (B-57) oscillate around the true value of Qmn(x) as suc-
cessive terms in the sum are added. It was observed that if only half the
last term retained in the expansion were added, the resulting sum was sig-
nificantly closer to the true value of Qmn(x) than if the entire last term
were added. Therefore, we shall write, instead of Eq. (B-57),

Npn(x)-1
= 1
Bl ) Amnk %™ + 7 dmnkc X2 N (x)- (B-61)
k=0

Using in Eq. (B-61) the same qmnpk as were used in calculating the asymp-
totic results given in Eqgs. (B-60), we obtain

Qp(11) = 0.9848192 ~ 0.9848220;

Q;(11) = 0.956721 ~ 0.956688;

Qp,(11) = 0,9707702 ~ 0.9707549;

Q,(11) = 0.918438 ~ 0.918267;

Q;,(11) = 0.84997 ~ 0.85106;

Qsp(11)

DT T2058 =10, 7737 6; (B-62)
The asymptotic values given in Egs. (B-62) are better than those given in
Egs. (B-60). Hence, the asymptotic expansion (B-61) was used in the

computer program to approximate the desired Qmn(x) for x = 11.

12. Fily,1,@), j = 4,5,6,7,8,9

By substituting the asymptotic expansions for K(y) and K*(y) from
Egs. (B-28) and (B-29), the expansions for f,(y), f3(y), and f,(y) from
Egs. (B-31), and the expansion for ys/A(y) from Eqs. (B-34) and (B-35) into
the Eqgs. (125) for Fy(y, 1, a) through Fyg(y, 1,a), we find the asymptotic ex-

pansion for the F‘J‘. The leading terms in these expansions are found to be
given by



Faly, 1,a) ~ 2a[1+(1 -a) v~ ;
Foly, 1,a) ~ =2 + (0-1) v+ 27} (-2a? + 12 - 15) + 273(803 - 562 +3a+75) ¥ ;
Fe(v, 1,a) ~2a - (202 +a) v'h
Fily, La) ~ =% + 27420 1) v + 27%(-4a’ + 60 - 15)
+ 2741603 - 4002 - 300+ 75) v
Faly, 1,a) ~ a[y+27}(-8a +5) + 273(320% - 16a.- 97) ¥';
Fo(y, 1,a) ~ 2(a - 1) ¥2 + (-2a%+3a) vy + 27(40’ - 100? - 301)
+ 273(-160%+ 560 + 8602 - 117a) v~ L. (B-63)

The first two of these can also be obtained by letting p = | in Egs. (B-51),
noting that g;(1) and gj(1) are zero, from Egs. (B-23), (B-24), and (B-21).

13. V-SA(FY) fj<FY’1:a')’j = 4,5,6,7,8,9

By Egs. (125), (126), and (127) we have

VIAY) Faly, 1,a) = -2ay 3 {[a+2 +K(Y)] £(y) +£,00) + ¥ 20V}

VIA(Y) Fsly, 1,a) = -day36,(y) + v 3[y2+4 - K3(y) - 2K(V)] f5(v)
+y 2 (catd) yE+ 2720t = 12a+15) ") Blyk
v3A(Y) Fely, 1,a) = -2a[y*f(y) +v > ()]

v 50(y) Faly, 1,a) = -y °K(y) £5(y) + [v*+27 (-2 +1) v7*
2 (a2 60 1 5) Sy [ WA ()

YE0y) Fely, 1,a) = a{-y7*K(y) fi(v) + 4y [a+ KO)] £(7)
+4y7 3, (y) + [y E+ 27N (8a - 5) ¥7°] (W)}

Y5 A(y) Foly, 1 @) = 207734 - K3(y)] £(y) + 2y K () -¥* - 4] £5(v)

+[2(-a+1) v 3+(202 - 3a) Y7t + 271 (-4 + 1002+ 3a) V5] A(y).
(B-64)
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Substitution from Eqs. (B-31), (B-33), and (B-43) into Eq. (B-64) yields
Y5A(Y) Fyly, 1,a) ~a[2(a-1) vy +(12a - 3) y"2+27}(18a+33) y~*
+273(720, - 423) y*4+273(-90a +495) y~°
+277(-900a+8415) y~°+27%(7650 - 9540) v~ 7];
YSA(Y) Fs(y, 1, a) ~273(-80% + 5602 - 30.- 75) v~ + 273(-240% + 11107 +21a) y72
+ 277(-3840a° +1680a2 - 2130, - 7395) y~*
+ 277(14403 - 31502 - 2619a.+ 6930) y~*
+2719(-24,12002 + 105,5250.+ 82,755) vy~ >;
Y3A(Y) Felv, 1, @) ~a[(2a+1) y1+271(120+9) y 2 +27%(240.+33) v~ *
+27%4(-360,- 351) Y 4+274675) v °+278(-34200.+1035) y~°
+2°3(315a - 2070) v 7];
v 3A(y) Faly, 1,0) ~ 27%(-160° + 40a% +30a - 75) y~! + 27%(-48a° + 6% + 45a) y~2
+ 278(-768a3 - 9602 - 2394a, - 7395) vy~ 3
+ 2782880 + 6660 + 54630 - 6930) y~*
+2711(-48,2400%+ 14,1300 +82,755) ¥~ >
Y 3A(y) Faly, 1,0) ~a[273(-3202+16a+97) Y ' +273(-96a? - 87a+129) y~2
+277(-15360% - 1824 - 789) v 3+277(5760% + 26010 + 4680) Y4
+2719(-83,1600.+ 6525) y~°
+2719(27,360a% + 38250 - 128,655) Y~ ¢];
Y 5A(y) Foly, 1,a) ~a[273(1603 - 5602 - 86a+117) v~}
+27%(4803 - 54a% - 3270, - 162) y~2
+277(7680° - 67202 - 23100 +3033) v 3
+277(-28803 - 37802 - 30690, + 8406) y~*

+271°(48,2400% - 62,3700 - 326,025) ™). (B-65)



Using tabulated values, Eqs. (B-64) and Egs. (B-65), we find that

1075A(10) F4(10,1,1) = 0.111639 ~ 0.111623;
1075A(10) Fy(10,1,1.5) = 0.414797 ~ 0.414773;
10754(10) Fy(10,1,1) = -0.28516 ~ -0.28448;
1075A(10) F4(10,1,1.5) = 0.45648 ~ 0.45719;
1073A(10) F¢(10,1,1) = 0.4172298 ~ 0.4172219;
1075A(10) F¢(10,1,1.5) = 0.825169 ~ 0.825157;
1075A(10) F,(10,1,1) = -0.16587 ~ -0.16556;

“5A(10) F,(10,1,1.5) = -0.06049 ~ -0.06016;
10° 5A(10) Fg(10,1,1) = 0.917943 ~ 0.917881;
10” -"A(lo) Fg(10,1,1.5 = 0.438990 ~ 0.438883;

“5A(10) Fg(10,1,1) = -0.72365 ~ -0.72452;
10° 5A(lo) Fo(10,1,1.5) = -2.71576 ~ -2.71714. (B-66)

ONNS o (x)

By definition (131),

0
il t . mTT
Sit () = 'n_lrf tmgn(—;) sin ( -——2—) dt;
0

050,72 2n - e = R SR (B-67)
The asymptotic expansion for large x of this function is given by

Nmn(x

Smn(x srnnkx-Zk (B-68)

k=0
with

e~ (n+&—-11)>!!(lz?;!2k)!' (B-69)

The quantity Npn(x) is the largest value of k for which the series in
Eq. (B-68) is monotonically decreasing. Since by comparison with Eq. (B-56)
we see that

smank = | 9mnk |, (B-170)
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it follows that the values of Nyn(x) are the same in the expansion for Ol
and Sp,p,, for a given m, n, and x. From Egs. (B-56), (B-57), (B-68), and
(B-69), we also observe that

Sean(x) ~ Qun(ix). (B-71)

Since in Egs. (137) Sp(x) is given in terms of the exponential inte-
grals E*(x) and E,(x), the asymptotic expansions?? for E* and E,; can be
substituted into this equation in order to obtain the asymptotic expansion
for Sp;. In this way we can show that Eqs. (B-68) and (B-69) hold for
m = 0andn = 1. It can then be proven that Eqs. (B-68) and (B-69) are
true for arbitrary m and n by induction, making use of the recurrence
relations (109) which are valid for Spp.

The expansion given by Egs. (B-68) and (B-69) can also be obtained
by use of the technique discussed in Ref. 14, pp. 63-67.

15w ()

From Eq. (160) we have that

m-1 :
R SR i =il = -72
Wm(x) = Ci(x) Z;) g sin (x 2), welt = (0l s (B )
j=

Reference 22 gives the asymptotic expansion of the cosine integral as

1 1 1 1
—<—-*3—'—+2—L+...) cos x, (B-73)

which can also be written as

Ci(x) ~ Z j;_l sin ( -%) (B-74)

j=o

The substitution of Eq. (B-74) into Eq. (B-72) yields

Wm(x) ~ Z J: sin( l}) m o= GE20 (B-175)
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Appendix C. Proof of the Modified Form of Weber's Integral Theorem

In Ref. 13, pp. 468-470, Watson proves the following theorem, attrild=
uted to Weber:

Theorem 1:

o]
Weber's Integral Theorem. If/ £(y) ydy exists and is absolutely
(=

convergent, where € > 0, and

) = V(] Teln ) Ty Eaakieds (c-1)

then

f f vot(y) Q. p) Qm(n,p) dydp
1 (2,

= 2[350(n) + Yin(n)][EM + 0) + £(n - 0)], (c-2)
where 7 lies inside an interval in which f(y) has limited total fluctuation.

The proof of this thorem in Ref. 13 is based on two lemmas. These

are:¥

o]
Lemma 1. If/ F(y) 'yl/: dy exists and is absolutely convergent
&

(e > 0), then

A=

00
lim x‘“[ F(y) CmlvA) ydy = 0, (C-3)
(3

where the cylinder function Cm is defined by
Cm(z) = g[cos ¢ Im(z) + sin ¢ St (Cc-4)

0 and ¢ being constants.

{oe]
Lemma 2. If/ F(vy) VI/Z dy exists and is absolutely convergent
€

(e > 0), then

*See Ref. 13, pp. 464-469, for the proofs of these lemmas.
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5 d
limf F()[YContr(¥}) Can(A) - NCamta(n) CenlyN)] 22
ey ¥?-n

=+ 0’ [F(n+0) + F(n-0)], (c-5)

provided m lies inside an interval in which F(vy) has limited total
fluctuation.

In the solution of the problem discussed in this report, an integral

representation is employed which is similar in appearance to Eq. (C-2),
but which involves the kernel {y,, defined by

Qm(v,p) = YY) Im(ve) = Tm(¥) Ym(ve). (C-6)
We will prove here the corresponding theorem for this kernel, following
closely the proof of Theorem 1 in Ref. 13 and making use of Lemmas 1

and 2%

Theorem 2:

[eo]
Modified Form of Weber's Integral Theorem. If/ f(y) v dvy
2

exists and is absolutely convergent, where € > 0, then

f / Ye£(Y) (v, p) Qm(n,p) dydp
1 E

= L{3L(M1% + [Ym(n)1?} [E(n+0) + £(n - 0)], (c-7)

where 7) lies inside an interval in which f(y) has limited total
fluctuation,

The hypotheses of this theorem and Theorem 1 are evidently some-
what more restrictive than is necessary. In particular, in the traditional
statement of Weber's Integral Theorem, * the integration limit € is taken
to be zero, which requires a restriction on the behavior of f(y) as y—>0.

[o]
Theorems 1 and 2 are also true for functions f(y) for whichf f(y) v dy
€
does not exist, but the proofs for less restrictive conditions are more

lengthy and tedious.** In order to make extensive use of Watson's develop-
ment, particularly Lemmas 1 and 2, we have retained his hypotheses. In

*See Ref. 26 and Ref. 15, p. 74, for instance.
**See Ref. 11, Appendix B, where Blenkarn proves Theorem 2 for the particular case m = 0. In his proof
€ = 0 and the restrictions on f(-/) are that f(;/ )/y is bounded as v =0 and f(-) is monotonically
decreasing for large .



applying Theorem 2 to the problem discussed in this report, we assume that
Eq. (C-7) holds (with € = 0) for our unknown function y’D(y) [see Egs. (62),
(63)]. The solution of the problem is then independently verified through the
governing field equations and boundary conditions, so there is no need to
rigorously prove Theorem 2 for the particular case of our solution.

Proof of Theorem 2. Define the auxiliary functions Q'rn and M:

B ol = Wy ) - T Yi(Yp), (c-8)

N0 (¥.0) 2m(n,p) = Yo Ln(n.P) Om(v.p). (c-9)

M(v,n,p)

By Egs. (C-6) and (C-8),

M(y,n,1) = 0, (€10
and, using the recurrence relations for the Bessel functions,'® we have
OM(y,m.p)
s - (v*- 1% pQm(v.0) Om(n.p). (c-11)
We conclude from Egs. (C-10) and (C-11) that
A
M(v,m,%) = (vz-nz)f 0 Ren(¥.0) Qpn(n.0) d. (c-12)
1
Define
o A
E(m)N="lim y(y) f pQm(Y.0) Qm(n.p) dody. (c-13)
A= e 1
The substitution of Eq. (C-12) into Eq. (C-13) yields
® yi(v) M A
Ly o SRR Do (C-14)
IS CIle ool

Replacing @, and Qp, in Eq. (C-9) by their definitions (C-6) and (C-8), and
using the recurrence relations for the Bessel functions, we have from
Eq. (C-14) that

=

i) = Z Li(n), (C-15)

=

103
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00 3 x
L(n) = lim/ £) Ym) Y mtr ) Immd) = nIma(nd) It —3 _ynz dy;
€

A~

o ; Ay
L(n) = 1im/ 1Y) TmlY) ImMYY 1) Ym(n2) - nY o p(nh) Ymya)] A dv;
Ao e
Linl= - ;im / [T @) Ym(n) + Im(n) YW I Pm+(YA) Pm(n))
~o Je
Ay
= NP (MA) Pm(YN)] ——— 4v;
WRECH
Lin) = “"‘f L)) Vin(n) + Im(1) Yinl))] [YQemn ) Q)
Y
Ay
- NQ 4 (M) QMM )]— dy
4 )
Li(n) = lim f%f(v)[Jén(v) Y on(m) = 0 e S ] [T e ) i)
—w )
Ay
- YY1 (V) Tm(n)) + NI (M)) YmOA) - nY py, (nA) T,0A)] o dvy, (C-16)
and the cylinder functions P, and Q, are defined by
B (R (2 ) e ()
BIA) = i ) St L) (C21q)
00
Since, by hypothesis,f £(y) v dy exists and is absolutely convergent, the
€

first four integrals in Egs. (C-16) can each be evaluated by the application
of Lemma 2. Table C-I indicates the correspondence between terms in
Lemma 2 and the desired integrals.

TABLE C-1. Correspondence between Terms in Lemma 2
and the Integrals Ij(n), 3 =1,2.3,4

Terms in (C-4), (C-5)
Integral
F(y) Cin o ¢
I £(y) Ym(y) Ym(n) T 1 0
I £(v) Im(¥) Jm(n) Y 1 m/2
I, -2V Tm(Y) Ym(n) + Im(n) Ym(¥)) P 2 /4
I V) [Im(Y) Ym(n) + Im(n) Yim(y)] Qe vy -m/a
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Therefore, we have

1

L(n) = 2[Ym(n)]* [(n+0) + £(n - 0)];

1

L(n) = $[Im(m1? [£(n+0) + £(n - 0)];

L(n) = - 2Im(n) Ym(n)[£(n+0) + £(n - 0)];

L(n) = 37m(n) Yi(n)[£(n +0) + £(n +0)], (c-18)

provided 7 lies inside an interval in which f(y) has limited total
fluctuation.

The integral I5(7)) can be expressed as the sum of four integrals
each of which can be evaluated using Lemma 1. Only the first of these will
be discussed here, since they can all be treated in the same manner. Consider

Liln) = gehk FEFm(Y) Ym(n) - Im(n) Ym(v)]
(=
[ T sV Yn(mN)] —2—, 4, (c-19)

e )
which is equivalent to
tain) = tim (VA Yi(m)] tim /3 () T (VA ¥ Y,
5 (c-20)
where
v

1
_zf(’Y) 2 2
e w)

l

F(y) [0 by} Tralg) - Jialn) Tl ]l (c-21)

The first limit in Eq. (C-20) is bounded because of the behavior of the
Bessel function for large values of its argument. The second limit will be
zero by Lemma 1 if F(7y) meets the hypotheses of this lemma. Since
) Y m(@) - Imin) Y}n(’y)]/(vz— Nn?%) is bounded for 7y near 7, as can

[ee]

be shown by L'Hospital's Rule,f F(y)Wy dy exists and is absolutely
€

[ee]
convergent iff f(y) v dy exists and is absolutely convergent.
(Z
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Consequently,

Iy(n) = Is(n) = O.

(c=22)

By Eqs. (C-15) and (C-18), and the above discussion of I; we have,

finally, that
1(n) = ={[Tm(m]® + [Ym(n)1*} [£(n+0)+£(n-0)],

or, by the definition (C-13) of I(n),

f f Yo£(¥) Qm(Y,p) @m(n.p) dydp
1 €

= ([ T2 + [Yem(m)]?} [£(n +0) +£(n - 0)]

which is what was to be shown.

(C-23)

(Cc-24)
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Appendix D, Computer Programs

The computer programs, which were written in FORTRAN for the
IBM-704, comprise three groups: Programs 8 and 8A solve the integral
equation (65) for the function D(n) at 75 points in the interval (0,2000) for
a =1 and 3/2, respectively. The boundary condition on T}z;{z at z = 0
was checked and the displacement ug on z = 0 was calculated through the
use of Programs 15, 16, 9, 10A, 14, and 11. Finally, the stresses ’rl;\z,
Tge, and T%Z on the hole r = a were calculated by the successive appli-
cations of Programs 7, 3A, and 17.

In addition, Programs 1, 2, 3, 4, 5, 6, and 10, which are not repro-
duced here, were devised to calculate some of the needed auxiliary func-
tions, such as Ty, :fzz: Q,, Qmn, and A. After being checked to see that
the functions were computed correctly and accurately, these programs
were then incorporated into the programs discussed above.
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(10,2041),(20,10045),(100,2000,100).
L IS KERNEL OF INTEGRAL EQUATION —
LO IS EXACT FUNCTION OF XI, ETA

conobooloo

PROGRAM 8. SOLUTION OF INTEGRAL EQUATION FOR
THE FUNCTIONG(XI)e ALPHA IS 1.0 (POISSON RATIO O

Oeb)eins

LS IS INTEGRAL OVER GAMMA(0,10)BY SIMPSONS RULE
LL IS INTEGRAL OVER GAMMA (IO, INF) BY ASYMPTOTIC METHODS

G IS DETERMINED AT 75 POINTS (. 25'5'.25)-(5-10-.5)1

DIMENSIONETA(T75),A(75,75),TABR(66),Q1(75),Q2(75),

XQ3(75),Q4(75),TABJ(66),TABY(66)4B(T75,1)
PI=3.14159265

CLIM=1.CE-8
CST1=1.03204910
€ STORING OF ETAS
DO80O1IE=1,20
801 ETA(IE)=0.25#FLOATF(IE)
_D0B021E=21,30

802 ETA(IE)=-5.40.5#FLOATF(IE)
DO8031E=31,40
BO3 ETA(IE)=]E~20

DOB04IE=41,56
804 ETA(IE)=5#]E-180
DO80S51E=57,75

~ 805 ETA(IE)=100#I1E-5500
C CALCULATION OF LS(XI,ETA)

C INITIALIZATION PLUS VALUE FOR GAMMA EQUAL 10

JG=1
16=100
~_6GOTO0806

c INTEGRATION FOR GAMMA(.1,9.9,.1)
c GAMMA ROUTING
813 JG=2

16=1
GOT0806
815 1G6=1G+2
IF(98-1G) 816,818,806
816 J4G=3
1G=2

GoTo806
818 JG=4
________GOoTos806

c SUBROUTINE FOR F1, F2, F3
806 G=0.1#FLOATF(IG)
_ L1=BESKF(Gy0.491y66,XLOCF(TABR))
AKO=TABR(1)
AK1=TABR(2)
G2=G*G

AK=—(2.+(G2%AK1)/(G*AKO+2.%AK1))
AKSQ=AK#AK

777777 FFG=G2#(G2+48.-2.#AK) +12.
FFG1=G2+4.-AKSQ

DELGZ (FFGL®FFG-4.#G2+AK* (8.%G2+24.
-G2#AK-6.%AKSQ)) /G2

Fl 1.-(G2#FFG1+3,#AKSQ) /DELG2

F2=2.%(G-1.+AK#*(-G2+(G2+3.) *AK) /DELG2)

 F3=-G#(G2+4.875)+2,5-AKSQ*FFG/DELG2

L FUNCTIONS OF GAMMA, ETA, XI




IX=1

810

X=ETA(IX)
SGX=X#X/(X#X+G2)
1E=1

E=ETA(IE)
SGE=E=E/(E=E+G2)
DLSIN=(SGX#SGE)#(F1+(SGX+SGE)*F2+(SGX#SGE) #F3)

808

GOTO(B807,814,817,819),J6
XI, ETA ROUTING
TE=1E+1

809

IF(IX-1E)809,811,811
IX=IX+1
IF(75-1X)812,810,810

812
807

GOTO(813,815,815,820),J46
SUMMATIONS
A(IX,IE)=0.5+DLSIN

8l4

GOT0808
A(IX, IE)=ALIX,IE)+4.#DLSIN
60710808

817

819

A(IX, IE)=A(IX,IE)+2.*DLSIN
6010808
A(IX,IE)=(A(IX,IE)+2.#DLSIN)/30.

820

G0T0808
WRITEOUTPUTTAPEG,887
FUNCTIONS OF ETA

ASYMPTOTIC EXPANSION COEFFICIENTS FOR Fl, F2,
Bll=6.
812=-0.3

B13=-0.3675
B14=0.09225
B15=181.828125E-4

B16=-1403.4375E~5
B17=1676.0566E-6
B18=9726. 75E-17

B21=-0.75
B22=-1.05
B23=-.12984375

B24=.210375
B25=-498.14648E-4
B26=-782.4375E-5

B31=11.5546875
B32=-4.63125
B33=1.2664746

B34=-8.,5781251E-3
5F1(10),5F2(10),5F3(10)
F1A=2.7155861

F2A=-.88562005
F3A=4.0464440
CALCULATION OF H FUNCTIONS

D08251E=1,75
E=ETA(IE)
E2=E*E

EA=E/10.
EA2=E2/100.
EEAA=E2/(100.+E2)

EEAA2=EEAA®EEAA
IF(8.-E)860,861,861
SUBROUTINE FOR H FUNCTIONS FOR SMALL ETA

861

INT=4.
IN8=9.
EA2N=EA2

H7=0.0

109
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H8=0.0

863

HT7=HT+EA2N/INT
H8=HB+EA2N/IN8
ABEN=ABSF(EA2N)

862

IF(CLIM-ABEN) 862,862,864
EA2N=-EAZN®*EA2
INT=INT+1l.

INB=INB+2.
GOT0863

864 H5=EA2#(.333333333-H7)

H3=EA2#(0.5-H5)
H1=EA2#(1.-H3)

_H6=EA2%(.142857143-H8)

H4=EA2#(0.2-H6)
H2=EA2#(.333333333-H4)
GOT0865

C

C

860

H NOT SMALL
H1=LOGF(1.+EA2)
AT=ATANF(EA)

H2=1.-AT/EA
H3=1.-H1/EA2

 H4=.333333333-H2/EA2

865

H5=0.5-H3/EA2
H6=0.2-H4/EA2

_H7=,333333333~-H5/EA2

HB8=.142857143-H6/EA2
CONTINUE
CALCULATION OF Q FUNCTIONS

QL(IE)=((0.5#B11+4B21)#H1+(B1l2+2.5%B22)#H2+(0.5%B13
X+1.5#B823) #H3+(B14+3.5#B24)#H4+(0.5%B15+42.#B25) #H5
X+(B16+4.5#B26)#H6+0.5#B17#H7+B18#HB8-F2A*

XEEAA)/E2
Q2(IE)=(B31#H1+2.#B32#H2+B33#H3+2,#B34#H4) /E2
Q3(IE)=(0.5%B31#H1+]1.5#B32#H2+B33#H3+2,5#B34%H4

X-F3A%EEAA)/(E2%E2)
Q4(1E)=-F1A*EEAA+0.5#B11#H1+1.5#B12#H2+B13#H3

X+2.5#B14%H4+]1 .5#B15#H5+3,5#B16#H6+2, *B1T7#H7

(
c

X+4.,5#B18#H8-F2A+EEAA2+B21+(H1-EEAA)
X+3,75#822#(H2-EEAA/3.)+3.+#B23#(H3-0.5#EEAA)

_ X+8.75#B24#(H4-0.2#EEAA)+6.#B25# (HS5-EEAA/3.)

X+15.75#826# (H6-EEAA/T.)~-F3A=EEAA®EEAA2/3.
X+0.5#B31# (H1-EEAA-0.5%EEAA2)+2.1875#B32#(H2

X-EEAA/3.-EEAA2/7.5)+2.#B33# (H3-0.5%EEAA-EEAA2/6,)

X+6.5625#B34#(H4-0.2#EEAA-EEAA2/17.5)
WRITEOUTPUTTAPEG6,B884EyHlyH24H3,H4 yH5,H64HT4H8,
1Q1(IE),Q2(IE),Q3(IE),Q4(IE)

825 CONTINUE

CALCULATION OF LO(XIJETA),LLIXI,ETA)
DIAGONAL ELEMENTS

WRITEOUTPUTTAPEG6,880
DOB30IE=1,75
E=ETA(IE)

DLO=(.109375«PI+E#(-.1875+E®E/12.))+E
DLL=Q4(IE)
DLS=A(1E, IE)

830

DL=CST1#(DLS+DLL+DLO)
WRITE OUTPUT TAPE6,883,E,DLO0,DLS,DLL,DL
A(IE,IE)=DL/3.

- DOBALIX=P,75 .

OFF-DIAGONAL ELEMENTS
WRITEQUTPUTTAPEG6,890

X=ETA(IX)



X2=X=X

WRITEOQUTPUTTAPE6884,4X
NE=IX-1
DO8311E=1,NE

E=ETA(IE)
E2=E=E
DXE=(X-E) #(X+E)

BLGN=LOGF (X/E)
SXED=X2#E2/DXE
XED=X#E/(X+E)

DLO0=0,125#PI#XED®#(3.~5.#XED/(X+E))-2.*SXED#BLGN
X+SXED#* (SXED#BLGN# (X2+4E2-9.75)-X2#E2
X+2.4375%(X2+E2))/DXE

DLL=SXED#(Ql(IE)-QL(IX)+SXED#((Q2(IX)-Q2(IE))
X/DXE+Q3(IX)+Q3(IE)))
DLS=A(IX, IE)

DL=CST1#(DLO+DLL+DLS)
WRITEOUTPUTTAPE6,883,E,DLO,DLS,DLL+DL
COMPLETION OF L(XI,ETA)MATRIX AND WEIGHTING FACTORS

831

AlLIX,IE)=DL/3.
A(IE, IX)=DL/3.
D08351X=1,75

837

D08371E=2,418,2
A(IXyIE)=0.5%A(IX,IE)
A(IX,20)=0.75%A(1X,20)

838

D0B838BIE=21,29,2
A(IXy IE)=2.#A(IX,1E)
A(IX,30)=1.5#A(1X,30)

839

D08391E=31,39,2
ACIX,IE)=4.=A(IX,IE)
A(IXy32)=2.2A(1X,32)

AlIXy34)=2.2A(1X,34)
A(IXy36)=2.%A(1X,36)
A(IX,38)=2.%A(1X,38)

841

A(IXy40)=6.2A(IX,40)
DOB411E=41455,2
A(IX,IE)=20.%A(IX,IE)

842

D08421E=42+5442
A(IX, IE)=10.#A(IX,IE)
A(IX,56)=105.#A(1X,56)

843

DOB8431E=57,75,42
A(IX,IE)=400.#A(IX,yIE)
DOB441E=58,74,2

844
835

A(IX,1E)=200.#A(IX,I1E)
CONTINUE
CALCULATION OF Y(XI) 50 D o

WRITEOUTPUTTAPEG, 891
XI LESS THAN 10
D08501X=1,30 el

X=ETA(IX)
X2=X#X
22=BESJF(Xy0e91,66,XLOCF(TABJ))

Z3=BESYF(Xy0.,1+966,XLOCF(TABY))
AJO=TABJ(1)
AJ1=TABJ(2) L=

AY0=TABY(1)
AY1=TABY(2)
EJ2PR=(X-4./X)®#AJ1+2.#AJ0

EY2PR=(X=4./X)®AY142.#AY0
Y=X2#X2#(EJ2PR*EJ2PR+EY2PR#*EY2PR)
WRITEOQOUTPUTTAPEG6,885,X,Y ES

850

ACIXy IX)=A(IX,IX)-Y



XI GREATER THAN 10 S

D0B8511X=31,75
X=ETA(IX)
X2=X#X

X4=X2#X2
=.6366197TeX#(X4-1.625#X2+3.3984375+16.3037109/X2

X-61.283112/X4)
WRITEOUTPUTTAPEG6, 885Xy Y

851 A(IX,IX)=A(IX,IX)=Y
WRITEOUTPUTTAPEG6, 892
LOAD MATRIX B
D08531X=1,75

853 B(IX,1)=-1.27323954

SOLUTION OF SYSTEM OF ALGEBRAIC EQUATIONS FOR THE
FUNCTION G(XI) USING SUBROUTINE MATINV
CALLMATINV(A,75,B,1,DETERM)

WRITEOUTPUTTAPEG6, 885, (ETA(IX)4B(IXy1),IX=1,75)
FORMATS
887 FORMAT(30H1ETA, H FUNCTIONS, Q FUNCTIONS)

888 FORMAT(F7.3/6E17.8/6E17.8)
880 FORMAT(44H1SOLUTION OF INTEGRAL EQUATION FOR ALPHA 1.0//18H DIAGON
XAL ELEMENTS/19H ETA, LO,y, LS, LL, L)

883 FORMAT(F10.3,4E20.8)
890 FORMAT(22H1OFF-DIAGONAL ELEMENTS/19H ETA, LO, LS,y LL, L)
884 FORMAT(7H XI IS F10.3)

891 FORMAT(10H1XI, Y(XI))
885 FORMAT(F10.3,E20.8)
892 FORMAT(31H1XI, G(XI) FOR ALPHA EQUALS 1.0)

CALL SYSTEM
END ( 1 1., Dy 1 0 ) ANL-30



(s PROGRAM 8A. SOLUTION OF INTEGRAL EQUATION FOR
C THE FUNCTION G(XI). ALPHA IS 1.5 (POISSON RATIO 0.25).
E G IS DETERMINED AT 75 POINTS (425359425)49(5410545),
c (10,2041)4(20,10045)4(100,2000,100).
C L IS KERNEL OF INTEGRAL EQUATION B & &
(% LO IS EXACT FUNCTION OF XI, ETA
c LS IS INTEGRAL OVER GAMMA(0,10)BY SIMPSONS RULE
C LL IS INTEGRAL OVER GAMMA (|0, INF) BY ASYMPTOTIC METHODS
DIMENSIONETA(75),A(75,75),TABR(66),Q1(75),Q2(75),
XQ3(75),Q4(75) yTABJ(66) s TABY (66),4B(75,1)
P1=3.14159265
CLIM=1.0E-8
CST1=1.54807365
C STORING OF ETAS =
D08011E=1,20
801 ETA(IE)=0.25#FLOATF(IE)
D0O8021E=21,30
802 ETA(IE)=-5.+0.5#FLOATF(IE)
DO8031E=31,40
803 ETA(IE)=IE-20 i
DO804IE=41,56
804 ETA(IE)=5#1E-180
D0OBCSIE=57,75
805 ETA(IE)=100#IE-5500
c CALCULATION OF LS(XI,ETA)
C INITIALIZATION PLUS VALUE FOR GAMMA EQUAL 10
JG6=1
16=100
GOT0806
c INTEGRATION FOR GAMMA(.1;9.945.1)
c GAMMA ROUTING
813 JG=2
16=1
GOT0806
815 I1G=1G+2
IF(98-1G)816,818,806
816 JG=3
16=2
GOT0806
818 JG=4
GO0T0806
C SUBROUTINE FOR Fl, F2, F3
806 G=0.1#FLDATF(IG)
21=BESKF(Gy0ey1,66,XLOCF(TABR))
AKO=TABR( 1)
AK1=TABR(2)
G2=G#G
AK=—(2.+(G2#AK1)/(G*AKO+2.#AK1))
AKSQ=AK=AK
FFG=G2#(G2+8.-2.*AK)+12.
FFGl=G2+4.-AKSQ
DELG2=(FFGl*FFG-6.#G2+AK#(12.%#G2+36.
X=1.5#G2#AK-9.#AKSQ))/G2 it
Fl=1.-(G2#FFG1+4.5%AKSQ)/DELG2
F2=2.%#6-3.42.#AK#*(-G2+(G2+3.)#AK)/DELG2
F3=G#(-G2+0.5#G-5,125)/1,5+1.~AKSQ#FFG/(1.5%DELG2)
C FUNCTIONS OF GAMMA, ETA, XI
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I1X=1

810

X=ETA(IX)
SGX=XaX/(X#X+G2)
I1E=1

811

E=ETA(IE)
SGE=E«E/(E#E+G2)
DLSIN=(SGX#SGE)#(F1+(SGX+SGE)#F2+(SGX#SGE) *F3)

808

GOTO(807,814,817,819),J6
XI, ETA ROUTING
IE=IE+1

809

[F(IX-1E) 809,811,811
IX=IX+1
IF(75-1X)812,810,810

812

807

G0TO(813,815,4815,820),J6
SUMMATIONS
A(IXyIE)=DLSIN-3.83333333

814

G0T0808
A(IXy IE)=A(IX,IE)+4.=*DLSIN
GOT0808

817

819

A(IXy IE)=A(IX,IE)+2.#DLSIN
6010808
A(IXy IE)=(A(IX,IE)+2.#DLSIN)/30.

820

G0T0808
WRITEQOUTPUTTAPEG, 887
FUNCTIONS OF ETA

[aXalig]

ASYMPTOTIC EXPANSION COEFFICIENTS FOR Fl, F2, F3
ALPHAl.5
Bl1=8.

Bl2=-1.
B13=-.355
B14=.16325

B15=.0011
B16=-.0190075
B17=5257.91797E-6

B18=5876. 156~ 1
B21=-2.25
B22=-1.65

B23=.19453125
B24=,2094375
B25==925, 3535 16E~%

B26=431.0625E-5
B31=2.515625
B32=-3.00625

B33=1.53451172
B34=-,23175
5F1(10),5F2(10),5F3(10)

F1A=3.39780533
F2A=-1.78905591
F3A=.381009667

CALCULATION OF H FUNCTIONS
DO8251E=1,75
E=ETA(IE)

E2=EeE
EA=E/10.
EA2=E2/100.

EEAA=E2/(100.+E2)
EEAA2=EEAA%EEAA
IF(8.-E)860,861,861

861

SUBROUTINE FOR H FUNCTIONS FOR SMALL ETA
INT=4,

IN8=9.

EA2N=EA2




H7=0.0

863

H8=0.0
HT=HT+EA2N/IN7
HB8=HB+EA2N/ZN8

862

ABEN=ABSF(EA2N)
IF(CLIM-ABEN) 862,862,864
EA2N=-EA2N#EA2

INT=INT+1.
INB=IN8+2.
GOT0863

864

H5=EA2#(.333333333-H7)
H3=EA2#(0.5-H5)
H1=EA2#(1.-H3)

H6=EA2%(.142857143-H8)
H4=EA2%(0.2-H6)
H2=EA2%(.333333333-H4)

GOTO0865
C H NOT SMALL
860 H1=LOGF(1.+EA2)
AT=ATANF(EA)
H2=1.-AT/EA
H3=1.-H1/EA2
H4=,333333333-H2/EA2
H5=0.5-H3/EA2
H6=0.2-H4/EA2
H7=.333333333-H5/EA2
H8=.142857143-H6/EA2
865 CONTINUE
C CALCULATION OF Q FUNCTIONS
QL(IE)=((0.5#B11+B21)#H1+(B12+2.5%B822)#H2+(0.5%B813
X+1.5#B23) #H3+(B14+3.5#B24)#H4+(0.5#B15+2, #B25) #H5
X+(Bl6+4.5%826)#H6+0.5#B17#H7+B18#HB8-F2A»
XEEAA)/E2
Q2(IE)=(B31#H1+2.#B32%H2+B33#H3+2. «B34#H4) /E2
Q3(IE)=(0.5#B31#H1+1.5#B32#H2+4B33#H3+2,.5%B34%H4
X-F3A=EEAA)/(E2#E2)
Q4(IE)=—F1A%EEAA+0.5#B11%#H1+1.5#B12%H2+B13#H3
X+2.52#B814%H4+1.5#B15#H5+3.52B16#H6+2, #B1T#HT
X+4.58B18#HB-F2A*EEAA2+B21# (HL-EEAA)
X+3.752B22#(H2-EEAA/3.)+3.#B23#(H3-0.5+EEAA)
X+8.75%B24#(H4—0.2#EEAA) +6.#B25% (H5-EEAA/3.)
X415,75#B26#% (H6-EEAA/T. )-F3A*EEAA*EEAA2/3.
X+0,5#B31# (H1-EEAA-0.5%EEAA2)+2.1875%B32#(H2
X-EEAA/3.-EEAA2/T7.5)+2.%B33% (H3-0.5*EEAA-EEAA2/6.)
X+6.5625%B834%(H4-0.2#EEAA-EEAA2/1T7.5)
WRITEOUTPUTTAPEG6,888,E,H1,H2,H3,H4,H5,H6,HT,H8,
1Q1(I1E),Q2(1E),Q3(IE),Q4(IE)
825 CONTINUE
c CALCULATION OF LO(XI,ETA),LL(XI,ETA)
C DIAGONAL ELEMENTS
WRITEOUTPUTTAPEG, 880
DO830IE=1,75
E=ETA(IE)
DLO=E#PI#(,71875-(E#E)/96.)+(E*E)#((E%*E)/18.-.430555556)
___ DLL=Q4(IE)
DLS=A(IE, IE)
DL=CST1#(DLS+DLL+DLO)
S WRITE OUTPUT TAPE6,883,E,0L0,DLS,0LL,DL
830 A(IE,IE)=DL/3.
C DFF-DIAGONAL ELEMENTS

WRITEQUTPUTTAPEG, 890

DOB311IX=2,75
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X=ETA(IX)

X2=X#X
WRITEQUTPUTTAPEG, 884, X
NE=IX-1

DOB311E=1,4NE
E=ETA(IE)
E2=E#*E

DXE=(X-E)#(X+E)
BLGN=LOGF (X/E)
SXED=X2#E2/DXE

XED=X#E/(X+E)
DLO=PI#XED#*(1.5-XED#(.25/(X+E)+XED/12.))
X-2.#*SXED#*BLGN+(SXED#SXED/1.5)#( (X2+E2) *BLGN/DXE

X=1e)+(41.#SXED/(24+#DXE))#(X2+E2-4.*SXED#*BLGN)
DLL=SXED#(QL1(IE)-QL(IX)+SXED*((Q2(IX)-Q2(IE))
X/DXE+Q3(IX)+Q3(IE)))

DLS=A(IX, IE)
DL=CST1#(DLO+DLL+DLS)
WRITEQOUTPUTTAPE6,883,E,0L0,DLS,DLL,DL

831

COMPLETION OF L(XI,ETA)MATRIX AND WEIGHTING FACTORS
A(IX,IE)=DL/3.
A(IE, IX)=DL/3.

. 837

838

DO8351X=1,75
D08371E=2,18,2
A(IX, IE)=0.5#A(IX,1E)

A(IX,20)=0.75#A(1IX,20)
DO8381E=21,29,2
A(IX, IE)=2.%A(IX,I[E)

839

A(IX,30)=1.5#A(1X,30)
D08391E=31,39,2
A(IXy, IE)=4.%A(IX,1E)

A(IX,32)=2.%A(1X,32)
AlIX,34)=2.2A(1X,34)
AlLIX,36)=2.2A(1X,36)

A(IX,38)=2.%A(IX,38)
A(IX,40)=6.%A(1X,40)
D08411E=41,455,2

841

842

A(IXy IE)=20.#A(IX,IE)
D0B421E=42,5442
A(IX,TE)=10.%ALIX,IE)

843

A(IXy56)=105.#A(1X,56)
DO8B431E=57,75,2
ALIX, IE)=400.#A(IX,IE)

844
835

DO8441E=58,T4,2
A(IXyIE)=200.%A(IX,IE)
CONT INUE

(g}

CALCULATION OF Y(XI)
WRITEOUTPUTTAPE6,891
X1 LESS THAN 10
D0O8501X=1,30
X=ETA(IX)

X2=X#X

L2=BESJF(X,0.,1,66,XLOCF(TABJ))
23=BESYF(Xy0.41,66,XLOCF(TABY))

 AJO=TABJ(1)

AJ1=TABJ(2) : -

AYO=TABY(1)
AY1=TABY(2)

EJ2PR=(X-4./X)#AJ1+2.#AJ0
EY2PR=(X-4./X)#AY1+2.%AY0
Y=X2#X2#(EJ2PR*EJ2PR+EY2PR*EY2PR)

WRITEOUTPUTTAPEG,BB5,X,Y W - BN y5eNE I



ACIX, IX)=ALIX,IX)-Y

850
C

XI GREATER THAN 10
008511X=31,75
X=ETA(IX)

X2=X#X
X4=X2%X2
Y=.636619T7T%#X#(X4-1.625#X2+3.3984375+416.3037109/X2

X-61.283112/X4)
WRITEQUTPUTTAPE6,8854XyY

851 A(IXyIX)=A(IX,IX)=Y
WRITEQUTPUTTAPEG6,892
C LOAD MATRIX B
D08531X=1,75
853 B(IXy1)=-.636619772
c SOLUTION OF SYSTEM OF ALGEBRAIC EQUATIONS FOR THE
C FUNCTION G(XI) USING SUBROUTINE MATINV
CALLMATINV(A,75,4B,1,DETERM)
WRITEOUTPUTTAPEG6,885, (ETA(IX)4B(IXy1),1X=1,75)
___ FORMATS
887 FORMAT(30H1ETA, H FUNCTIONS, Q FUNCTIONS)
888 FORMAT(F7.3/6E17.8/6E17.8)

880 FORMAT(44H1SOLUTIO F_IN

883
890

1AL ELEMENTS/19H ETA, LO, LS, LL, L)
FORMAT(F10.3,4E20.8)
FORMAT(22H10FF-DIAGONAL ELEMENTS/19H ETA, 10, LS, LL, L)

884
891
885

FORMAT(TH XI IS F10.3)
FORMAT(10H1XI, Y(XI))
FORMAT(F10.3,E20.8)

892

FORMAT(31H1XI, G(XI) FOR ALPHA EQUALS 1.5)
CALL SYSTEM
END ( 1 s 1, 0 1, 0 ) ANL-30
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PROGRAM 15. BOUNDARY CONDITION,

(aNaNalal

INTEGRALS OF G(ALPHA, ETA) X BC(ETA, RHO)
BC ARE INTEGRALS FROM O TO 10
BASED ON PROGRAM 5. = et

580 FORMATUIZ2Z{FL12,3) )

=

DIMENSIONRHO(15),ETA(40),BC1(40,15),B8C15(40,415),CR(9,15)
DIMENSIONG(2,40)

__DIMENSIONTABR(66) s TABG(66) -
INPUT OF RHOS
READINPUTTAPET7,580,NRy (RHO(IR)y IR=1,NR)

STORING OF ETAS
DO15C11E=1,20

1501 ETACTE)-0:25%FLOATE(IE)C - AL Ea:

DO15C21€E=21,3C

1502 ETA(IE)=-5.0+40.5#FLOATF(IE)

__DO15031E=31,40

1503 ETA(IE)=1E-20

Co.o

CST=2.7018982E-2
__FUNCTIONS OF RHO
DO5C3IR=1,NR
R=RHO(IR)
CR(9,IR)=1,/SQRTF(R)

R1=(R-1.)/R
R2=R1#(R+1l.)/R
R3=R1#(R#R+R+1,)/(R*R)

AL1=-1.875#R1
AL2=-.8203125#R2+3.515625%R1

_ AL3=.30761719%R3+1.,5380859#R2-5,05371C9*R1

ALS1=-2.375#R1
ALS2=-3.6328125#R2+5.640625%R1

_ ALS3=-1.7431641#R3+8,6279279#R2~4,7685547*R1

CR(14IR)=AL1+R#*#(1.-ALS1)
CR(2yIR)=-0.5+AL1+R#(1.5-ALS1)

CR(3,IR)==AL1-1.+R*ALS]

CR(4,IR)=-AL1-0.5+R*(ALS1-0.5)
CR(5yIR)==AL2-AL1+4.875%(R-1.)+R#ALS2
CR(63[R)==AL2-0.5#AL1~-4,625+R# (AL S2-0,5#ALS1+5.125)

CR(74IR)==AL3-AL2-4.875#AL1+R#(ALS3+4,.875%ALS1-2.5)
CR(8yIR)==AL3-0.5#AL2-4.625#AL1+0.75+R#(ALS3
X=0.5#%ALS2+5.,125#ALS1~1.5)

503 CONTINUE

c

INITIALIZATION OF BCl, BC15
DO5041R=1,NR

DO5051E=1,40
R=RHO(IR)
BCl(IEsIR)==1./(R#*R)-CR(9P,IR)#(2,*CR(1,IR)+CR(T7,IR))

505 BC15(IEyIR)==0425/(R#R)=CR(9,IR) #(3.#CR(2,IR)+CR(8,IR))
504 CONTINUE

GAMMA ROUTING

JG=1
I1G=1
~GOT0513

506 16=1G+2

_ 507 JG=2

IF(100-1G)5C7,508,513

1G=2
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GOTO513
508 JG=3
G0T0513
[+ ETA LOOPING
509 IE=IE+1
IF(40-1E)510,511,511
c RHO LOOPING
510 IR=IR+1
IF(NR-IR)512,5144514
512 GOTO(506,5064515),J4C
C FUNCTIONS OF GAMMA IN INTEGRANDS
513 G=0.1*FLOATF(IG)
GSQ=G*G
Z1=BESKF(Gy0ey1y664XLOCF(TABR))
AKO=TABR(1)
AK1=TABR(2)
AK=—(2.+(GSQ*AK1) /(G*AKO+2.*AK1))
AKSQ=AK*AK
EK2=AKO+2.#AK1/G
DELTAL=(GSQ+4.-AKSQ)*(GSQ# (GSQ+8.-2.#AK) +12.)
DELTAZ2=-4.#GSQ+AK#*(8.#GSQ+24.-GSQ*AK-6. *AKSQ)
DEK1=EK2#(DELTAL+DELTA2)
DEK15=EK2#(DELTAl+1.5+#DELTA2)
FG=GSQ* (GSQ#*GSQ+8.*GSQ+12.-2. *GSQ*AK)
HG=GSQ*(GSQ-(GSQ+3.) #AK)
A41=GSQ*(-GSQ*GSQ-9.#GSQ-12.+(3.#GSQ+3. ) #AK) /DEK1
A415=GSO#(-GSQ#*GSQ-9.%GSQ-12.+(3.#GSQ+1.5) #AK) /DEK15
AB41=-HG/DEK1
AB415=—HG/DEK15
A51=((GSQ+4.—2.#AK)#FG-4,#HG) /DEK1
A515=((GSQ+4e—-2.#AK)#FG-6.#HG)/DEK1S
AB51=-AK#FG/DEK1
AB515=—AK*#FG/DEK15
c FUNCTIONS OF GAMMA, RHO IN INTEGRAND
IR=1
514 R=RHO(IR)
GR=G#*R
IF(10.-GR)516,517,517
517 Z2=BESKF(GR,0491466,XLOCF(TABG))
AKRO=TABG(1)
AKR1=TABG(2)
EKR2=AKRO+2.#AKR1/GR
EKRP=—(2.#AKRO+(GR+4./GR) *AKR1)
GCTO518
(5 ASYMPTOTIC EXPANSIONS FOR EKR2, EKRP
516 RT1=SQRTF(1.5707963/GR)
RT2=-SQRTF(1.5707963%GR)
GR2=GR#*GR
GR3=GR#GR2
GR4=GR2#GR2
EKR2=RT1#(1.+1.875/GR+.8203125/GRZ2-+30761719/GR3
X+.31723022/GR4-+51549912/ (GR2#GR3)
X+1.1276543/(GR3%GR3)-3.0809127/ (GR4*GR3))
EKRP=RT2#(1.+2.375/GR+3.,6328125/GR2+1.7431641/GR3
X=e75942993/GR4+,91203690/ (GR2#GR3)
X-1.7075908/(GR3#GR3)+4.2488404/(GR3#GR4))
6070518
c CALCULATION OF H4, HS5
518 H41=CR(9, IR)*#(G#(1.-R)+CR(1,IR))
H415=CR(9,IR) #(G#(1l.-K)+CR(2,1IR))
H51=CR(9, IR)#((R-1,)#G*#GSQ+GSG*CR(3,IR)
X+G#CR (5, IR)+CR(7,IR))
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H515=CR(9,IR)#( (R-1.)*G#CSQ+GSQO*CR(4,IR)

X+G#CR(64IR)+CR(8,1IR))
C CALCULATION OF F4, F5
EMGR=EXPF(G#*(1.-R))

F41=EMGR* (A4l *EKR2+AB41#*EKRP=H41)
F415=EMGR#(A415#EKR2+AB415%EKRP-H415)
F51=EMGR# (AS51#EKR2+ABS1#EKRP=-H5]1)

F515=EMGR#(AS15#EKR2+AB515#EKRP-H515)
C ETA DEPENDENCE
I1E=1

511 E=ETA(IE)*ETA(IE)/(ETA(IE)*ETA(IE)+GSQ)
Bl=E#(2.#F41+E=F51)
B15=E#(3,#F415+E*F515)

c SUMMATIONS
GOTO(519,52C,521) 446
519 BC1(IEsIR)=BCL(IE,IR)+4,*B1

BC15(IE,IR)=BC15(IE,IR)+4.#B15
GOTO5C9
520 BC1(IEsJR)=BCI(IE,IR)+2,.%H]

BC15(IE,IR)=BC15(IE,IR)+2.#B15
GOT0509
521 BC1(IE,JR)=CST#(BCL1(IE,IR)+B1)

BC15(IE,IR)=CST#(BC15(IE,IR)+B15)
GOT0509
C OuTPUT

515 DOS522IR=1yNR
WRITEOUTPUTTAPE6,581,RHO(IR), (ETA(IE) BCL(IE,IR),
1BC1S5(IE,IR) 2 [E=1,40)

522 CONTINUE
581 FORMAT(1H1F7.3/(F8.3,2E20.8))
c G(1,ETA),G(1.5,ETA)FROM PROGRAM 8

C G(XI) FOR ALPHA EQUALS 1.0
G(1,1)=.20154125
G(1,2)=.20993569

G(1,3)=.21978752
G(ly4)=.22626457
G(1,5)=.21693650

G(1,6)=.18155049
G(1,7)=.13003021
G(1,8)=,84137466E-1

G(1,9)=.52481723E~1
G(1,10)=.33041545E-1
GllLyll)=221327350E=]

G(ly12)=.14224672E-1
G(1,13)=.97755832E-2
G(1,14)=.69195035E=-2

Glly15)=.5019973TE~2
G(1,16)=.37282833E-2
G(1,17)=,28227726E=2

G(1,18)=.21768700E-2
G(1,19)=.17043766E-2
G(1,20)=,13537167E-2

G(1,21)=.88540018E-3
G(1,22)=.60372C03E-3
G(1,23)=.42581421F-3

G(1,24)=.30909523E-3
G(1,25)=.22985333E-3
 G(1226)=a17456127E-3

G(1,27)=.13498336E-3
G(1,28)=.10606523E-3
e G129 ) = RS RG]l RE=G

G(1430)=,68194988E-4



G(1,31)=.45863959E-4

G(1,32)=431998922E-4
G(1,33)=.23014C08E-4
G(1,34)=.16982160E-4

G(1,35)=.12808580E~4
G(1,36)=.98455451E-5
G(1y37)=.76940523E~-5

G(1,38)=.61C09600E~5
G(1,39)=.49006505E-5
G(1,40)=.39822131E-5

G(XI) FOR ALPHA EQUALS 1.5

G(2,1)=.97895779E-1
G(2,2)=.98713586E-1

G(2,3)=.10012834
G(2,4)=.99914737E-1
G(2+5)=.92933235E~-1

G(2,6)=.75519875E-1
Gl2,7)=.52592502€E~1
G(2,8)=433125947E-1

G(2,9)=.20145591E~1
G(2,10)=.12380441E-1
G(2,11)=.78127421E-2

G(2,12)=.51004198E-2
G(2,13)=434359130E-2
G(2,14)=.23866579E-2

G(2,15)=e17014134E-2
G(2,16)=,12429380€-2
G(2,17)=.92674737E-3

G(2,18)=.,70445783E-3
G(2,19)=.54421783E-3
G(2,20)=.42685848E-3

G(2521)=427293737E-3
G(2y22)=.18244641E-3
G(2,23)=.,12646843E-3

G(2y24)=.90412962E-4
G(2425)=.66339907E-4
G(2426)=.49789584E-4

G(2,27)=.38101513E-4
G(2,28)=,29663067E-4
G(2,29)=.23443080E-4

G(2,30)=.18778225E-4
G(2y31)=.12473916E-4
G(2,32)=,86167022E-5

G(2y33)=.61473403E-5
G(2434)=.45062138E-5
G(2,35)=.33802395E=5

G(2,36)=.25865050E~5
G(2,37)=,20136259E-5
G(2,38)=.15915941E-5

G(2,39)=.12750054E-5
G(2,40)=410336716E-5

MULTIPLY BY WEIGHTING FACTORS

720

D0730J4=1,2
DO7201E=1,19,2
G(J,IE)=G(J,IE)/3.

121

DO7211E=2418,2
G(JyIE)=G(J,IE) /6.
G(J,20)=6(J,20) /4.

122

DO7221E=21+29+2
G(JyIE)=G(JyIEI/L1e5
DO7231E=22,284+2

723

G(JyIE)=G(JyIE)/3.

121



122

G(J230)=0.5%G(J,3C)

DO7241E=31439,2
724 G(JyI1E)=G(J4IE)/.T5
DO7251E=32,38,2 -

725 Gy IEV=C(J5TEN/1.5
730 G(J,40)=G(J,40)/3.
INTEGRATION OVER G(ALPHA,ETA)

(g

WRITEOUTPUTTAPE6,1590

1590 FORMAT(12H1PROGRAM 15./63H RHO, CONTRIBUTION TO TZZ STRESS FROM BC

11, BC15, GAMMA (0, 10C)) g

D01504IR=14NR
TZ21=0.0
T2215=0.0

DO15051E=1,40
TZZ1=TZZ1+4G(1l,IE)*BCL(IE,IR)
_1505 T27215=T2215+4G(2,IE)#BC15(IE,IR)

1504 HRITEOUTPUTTAPEb,1591,RHU(IR),Tlll.fllls
1591 FORMAT(F12.3,2E20.8)
_ CALLSYSTEM

END Ly 1, (U A=y ] )

ANL-30
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PROGRAM 16. BOUNDARY CONDITION AND UZ
INTEGRALS OF G(ALPHA, ETA)XJ2(ETA,RHO)

o000

FOR ETA (0,20)
BASED ON PROGRAM 6.
DIMENSIONTABJ(120),TABY(120),TABS(120),TABX(120),RHO(15)

DIMENSTIONEJ2PR(40),EY2PR(40),E3J(40,15) 4G(2,40) yETA(40)
INPUT OF RHOS
READINPUTTAPE7,680,NRy (RHO(I),I=1,NR)

680

FORMAT(12/(F12.3))
STORING OF ETAS
DC16011E=1,20

1601

1602

ETA(IE)=0.25*FLOATF(IE)
D016021E=21,3C
ETA(IE)=-5.0+0.5#FLOATF(IE)

1603

DC16031E=31,40
ETA(IE)=1E-20
DO16041E=1,40

E=ETA(IE)
E2=E=E
E4=E2#E2

CALCULATION OF EJ2PR,EY2PR
Z1=BESJF(E»0.,1,120,XLOCF(TABJ))
22=BESYF(E;04,1,120,XLOCF(TABY))

AJO=TABJ(1)
AJ1=TABJ(2)
AY0=TABY(1)

AY1=TABY(2)
EJ2PR{IE)=(E-4./E)*AJ1+2.%AJ0
EY2PR(IE)=(E-4./E)*#AY1+2.%AY0

CALCULATION OF J2(ETA,RHO)
DO602IR=14NR
R=RHO(IR)

605

RE=R*E
IF(20.-RE)604,605,605
23=BESJF(RE;0.,1,120,XLOCF(TABS))

24=BESYF(RE,0.,1,120,XLOCF(TABX))
AJRO=TABS(1)
AJR1=TABS(2) BN BTN 4

AYRO=TABX(1)
AYR1=TABX(2)
AJ2=2.*AJR1/RE-AJRO

AY2=2.%AYR1/RE-AYRO
EJ=EY2PR(IE)*#AJ2-EJ2PR(IE)#AY2
GCT01605 3

604

SN=SINF(E#(R-1.))
CS=COSF(E#(R-1.))
CRT=.63661977/SQRTF(R)

R2=R=R
R3=R#R2
R4=R2#R2

F12=((R-1.)/R2)#(-3.6328125#R+.8203125)
Fl4=((R-1.)/R4)#(-.75942993#R3-4,0278625%R2
X-1.0478210#R-,31723022)

F16=((R-1.)/(R2%R4))#(1,7075908#R2#R343.41766*R4
X+4.0406299%R3+43.5044026#R2+2.3519647%R+1.1276543)
F21=(2.375#R-1,875)/R 125

F23=(-1.7431641%R3+46.8115234#R2-1.9482422+R



X-+30761719)/R3

F25=(R4#(.91203690#R+1.4239211)+1.4299393%R3
X+1.1175156%R2+.75342178#R+.51549912)/(R2#R3)
F27=(R3#(-4,2488404%R4-3,2017329#R3-,74815527#R2

X+.23361370%R-.55298433)-1.8727116#R2
X=2.6781790%R-3.0809127)/(R3#R4)
EJ=CRT#(CS*(1.+(F12+F14/E2+F1€/E4)/E2)

X+(SN/E)=#(F21+(F23+F25/E2+F27/E4)/E2))
GOTO1605
1605 E3J(IE,IR)=E*E*EJ

602 CCNTINUE
1604 CCONTINUE
INTEGRATICON OVER G

G(1,ETA),G(1.5,ETA)FROM PROGRAM 8
G(XI) FOR ALPHA EQUALS 1.0
G(1,1)=.20154125

[eNalle]

G(1,2)=.20993569
G(1,3)=.21978752
G(1,4)=.226264517

G(1,5)=.21693€650
G(1,6)=.18155049
G(1,7)=.13003021

G(1,8)=.84137466E~1
G(1,9)=.52481723E-1
G(1,10)=.33041545E~-1

GllsAL)=,213271350F~1
G(1y12)=.14224672E~1
G(1,13)=.97755832E-2

G(1,14)=.69195035E-2
G(1,15)=.50199737E-2
G(1,16)=.37282833E-2

G(1,y17)=.28227726E-2
G(1,18)=.21768700E-2
G(1419)=.17043766E-2

G(1420)=.13537167E-2
G(1,21)=.88540018E-3
G(1,22)=.60372003E-3

G(1y23)=.42581421E-3
G(1524)=.30909523E-3
G(1925)=.22985333E-3

G(1,26)=.1T745€127E-3
G(1427)=.13498336E-3
G(1,26)=.10606523E-3

G(1,29)=.84515418E-4
G(1,30)=.68194988E-4
G(1,31)=.45863959E-4

G(1,32)=.31998922€E-4
6G(1,33)=.23014008E-4
G(1,34)=.16982160E-4

G(1,35)=.12808580E-4
G(1,36)=.98455451E-5
G(1,37)=.76940523E-5

G(1,38)=.61009600E-5
G(1,39)=.49006505E-5
G(1,40)=.39822131E-5

C  G(XI) FOR ALPHA EQUALS 1.5
G(2,1)=.97895779E-1
G(2,2)=.98713586E~1

G(243)=.10012834
G(294)=.99914737E-1
6(245)=.92933235€~-1

G(2,6)=.75519875E-1



125

G(2,7)=.52592502E-1
G(2,8)=.33125947E-1
G(2,9)=.20145591E-1
G(2,1C)=.1238C441E-1

G(2,11)=.78127421E-2
G(2,12)=.51004198E-2
G(2,13)=.34359130E-2

G(2y14)=.23866579E-2
G(2,15)=.17014134E-2
G(2,16)=.12429380E-2
G(2,17)=e92674737E-3
G(2,18)=.70445783E-3
G(2,19)=.54421783E-3
G(2,20)=.42685848E-3
G(2,21)=.27293737E-3
G(2,22)=.18244641E-3

G(2,23)=.12646843E-3
G(2,24)=.90412962E-4
G(2,25)=.66339907E-4

G(2,26)=.49789584E-4
G(2,27)=.38101513E-4
G(2,28)=.29663067E-4

G(2429)=.23443080E-4
G(2,30)=.18778225E-4
G(2,31)=.12473916E-4

G(2,32)=.86167022E-5
G(2,33)=.61473403E-5
G(2y34)=.45062138E-5

G(2,35)=.33802355E-5
G(2,36)=.25865050E-5
G(2,37)=,20136259E-5

G(2,38)=.15915941E-5
G(2,39)=.12750054E-5
G(2,40)=.10336716E=-5

MULTIPLY BY WEIGHTING FACTORS
D0730J=1,2
DO7201E=1,19,2

720 G(J,IE)=G(J,1E)/3.
DO7211E=2,18,2
721 G(J,IE)=G(J,IE)/6.

G(J,20)=G(J,20)/4.
DOT221E=21429+2
722 G(J,1E)=G(J,IE)/1.5

DO7231E=22,28,2
723 G(J,IE)=G(J,IE)/3.

G(J,30)=0.5#G(J,30)
DC7241E=31,39,2

724 G(J,IE)=G(JyIE)/.T5
DO7251E=32,38,2

725 G(JyIE)=G(J,IE)/1.5
730 G(J,40)=G(J,40)/3.
WRITEOUTPUTTAPE6,1680

1680 FORMAT(4HIRHO/50H CONTRIBUTION OF J2 TERM TO TZZ1, 12215, UZl, UZ1
15)
DC16061R=1,NR

T2Z1=0.0
T2215=0.0
uz1=0.0 = =

Uz15=0.0
DO16071E=1,40
T271=TZZ1+G(1,IE)*E3J(IE,IR)*ETA(IE) 54,

T2115=T21115+G(2,IE)*E3J(1E,IR)*ETA(IE)
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UZ1=UZ1-G(1l,IE)*E3J(IE,IR)

1607 UZ15=UZ15-1.5¢G(2,IE)*E3J(IE,IR)

WRITECUTPUTTAPE6,1681,RHO(IR),TZZ1,T2215,UZ1,UZ15
1681 FORMAT(F12.3/4E20.8)

1606 CONTINUE
CALLSYSTEM
END ( 1l ) 0, S 0 ) ANL-30
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PROGRAM 9. BOLNCARY CONDITICN
INTEGRALS CF G(ALPHA, ETA) X BC(ETA,RHQO)
BC ARE INTECRALS CGVER LARGE GAMMA >0
DIMENSICNRHO(15),ETA(40),BC1(40,15),BC15(40,15),CR(9,415)
CIMENSICONG(2,40)
DIMENSICNTABR(6€),TABG(66)
CST3=.135C094912
INPUT CF RHOS
RFOS TO BE MONCTONICALLY INCREASING
READINPUTTAPE7,58CsNRy (RHC(IR), [R=1,NR)
580 FCRMAT(TI2/(F12.3))
STORING OF ETAS
DC15011E=1,20
1501 ETA(IE)=0.25*FLCATF(IE)
DC15021E=21,3C
1502 ETA(IE)=-5.0+0.5#FLCATF(IE)
DC15031E=31,4C
1508 ETA(IE)=IE-20
FUNCTIONS OF RHC
CR FUNCTICNS FRCM PROGRAM 5
DC5C31R=1,NR
R=RHO(IR)
CR(G9,IR)=1./SCERTF(R)
R1=(R=1.)/R
R2=R1#(R+1.)/R
R3=R1#(R#R+R+1.)/(R=R)
ALl1=-1.875#R1
AL2=-.8253125#R2+3,515625%R1
AL3=.30761719#R3+1,5380859#R2-5.0537109*R1
ALS1=-2.375%R1
ALS2=-3.6328125%R2+5.,640625%R1
ALS3=-1.7431641%R3+8.62792T9#R2-4.768554T*R1
CR(1,IR)=AL1+R*(1.-ALS1)
CR(2,IR)==0.5+AL1+R*(1.5-ALS1)
CR(2,IR)==AL1-1.+R¥*ALS1
CR(4yIR)==AL1-0.5+R#(ALS1-0.5)
CR(5,IR)=-AL2-AL1+4.875%(R-1.)+R*ALS2
CR(6yIR)==AL2-C.5%#AL1-4.625+R7(ALS2-0,5%ALS1+5,125)
CR(7,IR)==AL3-AL2-4.875#AL1+R*x(ALS3+4.,875%ALS1-2.5)
CR(8, IR)==-AL3-C.5%AL2-4,625%AL1+0,75+R* (ALS3
X-Co5*ALS2+5.125#ALS1-1.5)
503 CCNTINUE
GAMMA RCUTING
Je=1
I1G=20
GCTC9C32
909 J4C=2
IG=21
GCTO9C3
911 IC=1G+2
IF(500-16)912,913,9C3
912 JG=2
Ic=22
GCTGC9C3
913 JG=4
GCTC9C3
ETA RCUTING

127
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o0

c

a5

i 118

[E=TE+1

IF(4C-1E)G069511,5511

RFO RCUTING

IR=1R+1

IF(NR=IR)GCByE144514

GCTO(SG9,911,911,915)4J6

FUNCTIONS OF CAMMA IN INTEGRANDS

G=C.5#FLOATF(IG)

GSQ=G*G

G3=C#CSQ

G4=CSC*GSC

SUBROLTINES FCR AK, EK2, CELTAl, CELTAZ,
ASYMPTOTIC EXPANSIONS
AK=-G-0.5-1.875/G+1.875/65Q0-1.0546875/63
1-1.40€25/G44(7.2509766/G-21.05375/GSG+58.1520C8/G3) /G4
EK2=(SQRTF(1.,57C7963/G) )#(1.+1.875/C+.8203125/GSQ
1-.307€1719/6G3+.31723022/6G4+(-.51549912/6
2+1.1276543/GSC-3.0809127/G3)/G4)
DELTA1=-(GSQ#G3-2.%G4-T7.125%#C3-3,75#GSC+4.2890625%G
1-16.87542.0654257/6+104.062£/GSQ
DELTAZ=-G4-3.%C3-3,#65Q0+1.125%G+6.6796875/6-19.€875/6G5Q
DEK1=EK2# (DELTAL+CELTA2)
DEK15=EK2#(DELTAl+1.5#DELTAZ)
FC=CSC#(GSQ#CSQ+B8.#CSQ+12.-2.*GSQ*AK)
HC=CSC#(GSQ-(CSC+3.) *AK)
A41=6SQ#(-CSQ#GSQ-9.#0SQ-12.+(3.#GSC+3. ) #AK) /CEKL
A415=CSC*(-GSC#CSC-9.%#6SQ-12.+(3.#GSQ+1.5) #AK)/CEK15
AE41=-HG/CEK1

AB415=-FG/DEK15

AS1=((GSQ+4.-2.#AK) #FG-4+#HC) /DEK]
A515=((GSQ+4.-2.#AK)#FG-6.%#HG) /DEK15
AB51=-AK#FG/DEK1

AB515=-AK#FG/CEKL5

FULNCTIONS CF GAMMA, RHO IN INTEGRANC

IR=1

R=RFO(IR)

GC=G*(R-1.)

IF(25.-GD)9C8,9C7,907

GR=G*R

IF(10.-GR)516,517,517
LZ=BESKF(GRy049 1966,y XLOCF(TABG))

AKRC=TABG(1)

AKR1=TABG(2)

EKR2=AKRU+2.%*AKR1/GR
EKRP==(2.,#AKRC+(GR+4./GR)*AKR1)

GCTO518

ASYMPTOTIC EXPANSIONS FCR EKRZ2, EKRP
RT1=SCRTF(1.5707963/GR)

RT2=-SQRTF(1.5707563%GR)

GR2=GR#GR

GR3=GR#GR2

GR4=GR2#GR2
EKR2=RT1#(1l.+1.875/GR+.E2U3125/GR2~-+30761719/GR3
X+.31723022/GR4-.51549912/(GR2#=CGR3)
X+141276542/(GR3#GR3)-3,0809127/(GR4*GR3))
EKRP=RT2#%(1.42.375/GR+3,632€125/GR2+1.7431641/GR3
X=eT75942993/CR4+,9120369C/(GR22GR3)
X=1.7075906/ (GR3#GR3)+4,24EB404/(GR3InGR4) )

GCTC51¢8

CALCULATION OF k&4, HS

H41=CR(Gy IR)#(G#(1e=R)+CR(1,IR))
H415=CR(9yIR)#(GC#(1.-R)+CR(Z,IR))



c

[aNaNel

904

910

HEL=CR(G, IR)*((R=1, ) *G*GSQ+CSC*CR(3,IR)

X+C*#CR(5, IR)+CR(7,41IR))
H515=CR(9,IR) #((R-1.)*G#GSQ+GSQ=CR(4,IR)
X+C#CR(64IR)+CR(8&,IR))

CALCULATICN OF F4, F5
EMGR=EXPF(G#*(1.-R))
F41=EMGR* (A4l *EKR2+AB41#EKRP-FH41)

F415=EMCR#(A4]15#EKR2+AB415#EKRP-H415)
FS1=tNGR#(AS1*EKR2+AB51#EKRP-H51)
FE15=EMGR*(A515#EKR2+AB515#EKRP-H515)
ETA CEPENCENCE

IE=1

E=ETA(IE)*ETA(IE)/(ETAULIE)#ETA(IE)+GSQ)

Bl=F#(2.%F41+E*F51)
B15=E#(3.%#F415+E#F515)
SUMMATICNS

GCTO(G04,910,514,914),4J6
BCL(IE,IR)=CST3«B1
BC15(IE,IR)=CST2#B15

GLCTO9CS
BCL(IE,IR)=BCL1(IE,IR)+4.%#CST3#R1

BC15(IE,IR)=BC15(IE,IR)+4.,#CST3#B15

GCTC9C5

914 BCI(IE,IR)=BCl{IE,IR)+2.#CST3=B1

BCL5(IE,IR)=BC15(IE,IR)+2.*#CST3%B15
GCTGC9C5
OUTPUT

915 DC916IR=1,NR

WRITECUTPUTTAPEE,98C,RHC(IR), (ETACIE) 4BCL (TE,IR),

1BC15(1E,IR),1E=1,40)

980 FCRMAT(1H1FB8.3/(F8.3,2E20.8))
916 CCNTINUE

INTEGRATICN GVER G
G(14ETA),G(1.5,ETA)FROM PROCRAM 8
G(XI) FOR ALPhA EQUALS 1.C
G(l,1)=.20154125
G(1y2)=.20993569
G(1,3)=.,21978752
Glly4)=.226264517
G(1,5)=.21693€5C
G(1,6)=.18155C49
G(1,7)=.130C3C21
G(1,8)=.8413T746€E-1
G(1,9)=.52481723E-1
G(1,1C)=.33041545E-1
G(1,11)=.21327350E-1
G(1ly12)=.14224672E-1
G(1912)=.97755832E~2
Glly14)=.€9195C35E-2
G(ly15)=.50196737E-2
G(lyl€)=.37282833E-2
G(1,17)=,28227726E-2
G(l,1€)=42176E7COE-2
G(1ly19)=.170427€6E-2C
G(1,2C)=.135371€7E-2
G(1,21)=.6854C018E-3
G(1ly22)=.€03720G63E-3
G(1,22)=,42581421E-3
G(1y24)=430909523E-3
G2 e =e22965333E=3
G(1,26)=e1745€127E-3
G(1y27)=41349E8326E-3

129
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G(1y2€E)=410606523E-3
Cl1,29)=.E4515418E~4
G(1y3C)=.681949€E8E-4
G(1y31)=.45863959E-4
Gl1,32)=431998922E~4
G(1,32)=,230140CBE-4
G(1ly34)=4169821€0E-4
G(1,35)=.128CE5E0E-4
G(ly3€)=498455451E-5
Gy 3T 1=e16940523E-5
G(1y36)=.610096C0E-5
G(1,39)=.49CCE5C5E~-5
G(1,4C)=.39822131E-5
(5 GUXL) FOR ALPFA EQUALS ‘1.5
G2y 1)=90895115E=1
G(292)=.9ET1358¢€E-1
G(2+43)=.1C012€34
G(294)=.99914737E-1
GE2y5)=292933235E-1
G(2,6)=.75519€75€E~1
Gi2s7)=452592502E~1
Gl2s8)=,33125947E~1
G(2,9)=.20145591E-1
C(2,1C)=.1238C441FE-1
G(2411)=.78127421E-2
G(2,12)=.51004198E-2
G(2,12)=434359130E-2
G(2,14)=.2386€579E-2
G(2y15)=¢17014134E-2
G(2y1€)=412425380E-2
G(2517)=.92674737E-3
G(2y1€)=4T70445783E-3
G(2Z2y19)=4544217€3E-3
G(2,20)=.42685848F-3
Gl2,211=,2T7293737E-3
G(2922)=.18244641E-3
G(2423)=.1264€843E-3
G(2,24)=.504129€2E-4
G(2,25)=.6€6339907E-4
G(2,2€)=.4978G55E4E-4
G(2,27)=.38101513E-4
Gl2,28)=4296620€7E-4
G(2y29)=.234430E0E~-4
G(2,30)=.18776225E-4
G(2931)=412472916F~-4
Gl2932)=.86167022E-5
G(2y32)=.61473403E-5
G(2,34)=.45062128E~-5
G(2,35)=,33602365E~-5
G(2y3€)=.25865050E-5
G(2y37)=,2013€259E=-5
G(2y38)=415915941E-5
G(2439)=412750054E-5
G(2,4C)=.1033€716E-5
(¢ MULTIPLY BY WEIGHTING FACTORS

DC7304=1,2
DC7201FE=1,19,2

720 GUJyIE)=G(J,IE)/3.
DC7211E=2,18,2

721 G(JyIE)=GlJIyIE) /6.
G(Jy2C)=G(Jy20) /4.
DC7221E=21429,2



IS

722 G(JyIEN=G(JyIEN/La5
DC7231E=22,28,42

723 G(J,IE)=GlJ,1E)/3.
G(Jy3C)=0.52G(J,3C)
DC7241E=31+39,2

724 G(JyIE)=G(J,IE)/.T5
DC7251E=32,38,2

725 G(J»IE)=G(JyIE)/1.5

720 G(Jy4C)=G(J,4C) /3.
WRITECUTPLTTAPEE,9E1

9€1 FCRMAT(11F1PRCGRAM 9./7CGH RFO, CONTRIBUTICN TC TZZ STRESS FRCM RC1
1, BC15%, GAMMA GREATER THAN 10)
DC923IR=1,NR
TZZ1=C.0
T2215=0.0
DCG21IE=1,40
TZZ1=TZZ1+4G(1,IE)*BC1(IE,IR)

924 T2Z215=T2115+G(2,1E)*BC15(1E,IR)

920 WRITECUTPUTTAPEE,9824,RHC(IR),T221,TZZ15

982 FCRMAT(F12.3,2E2C.8)
CALLSYSTEM

ERD ( 1 1., 0 0 ANL-3C

(=)
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s XsEzEnEakel

C
c

(aNal

1001
1002

1003

503
1055
1072

1053

1004

1005

PROGRAM 10A. BOUNDARY CONDITION.

INTEGRALS OF G(ALPHA,ETA)X W(ETA,RHC)

BASED ON PROGRAM 10.

CALCULATION OF FUNCTIONS OF SINE AND COSINE
INTEGRALS BASED ON ARCSI1

REVISED TO USE ASYMPTOTIC EXPANSIUNS FOR X
GREATER THAN 11

DIMENSIONRHO(15) yETA(40)4CR(9415) ,W1(40),W15(40),CF(6)
DIMENSIONAC(4),A2(4) A4(4),A6(4),GP(4)
DIMENSIONG(2,4U)yWR1(40,15),WR15(40,415)
INPUT OF RHOS
READINPUTTAPE7,1080,NRy (RHO(IR) 4 IR=1,NR)
PI=3.14159265

STORING OF ETAS

DC1001I1E=1,20

ETA(IE)=0.25#FLOATF(IE)

DO10C21E=21,30

ETA(IE)=-5.+0.5#FLOATF(IE)

DC1CO3I1E=31,40

ETA(IE)=1E-20

CST8=.81056947

CR FUNCTIONS FROM PROGRAM 5

DO503IR=14NR

R=RHO(IR)

CR(9,IR)=1./SQRTF(R)

R1=(R=1.)/R

R2=R1#(R+1.)/R

R3=R1#(R#R+R+1.)/(R*R)

AL1=-1.875#R1

AL2=-.8203125#R2+3,515625%R1
AL3=.30761719#R3+41.5380859#R2-5.0537109#R1
ALS1=-2.375#R1
ALS2=-3.6328125#R2+5.640625*R1
ALS3=-1.7431641%R3+8.6279275%#R2-4.7685547#R1
CR(1,IR)=AL1+R*(1.-ALS1)
CR(2yIR)=-0.5+AL1+R#(1.5-ALS1)
CR(3,IR)=-AL1-1.+R#ALS]

CR(45 IR)=-AL1-0.5+R#(ALS1-0.5)
CR(54IR)=-AL2-AL1+4.875%(R-1.)+R*ALS2
CR(63IR)=-AL2-0.5%AL1-4.625+4R*(ALS2-0.5%ALS1+5.125)
CR(7yIR)==AL3-AL2-4.875#AL1+R#(ALS3+4.875#ALS1-2.5)
CR(8yIR)==AL3-C.5#AL2-4.6252AL1+0.75+R#*(ALS3
X-0.5#ALS2+5.125#%ALS1-1.5)

CCNTINUE

IR=1

WRITE OUTPUT TAPE6,1081,RHO(IR)
IF(RHO(IR)-1.)1071,1071,1072

D=RHO(IR)=-1.

I1E=1

EC=D#ETA(IE)

ED2=EC+ED

SUBROUTINE FOR FUNCTIONS CF SINE AND COSINE INTEGRALS,
FUNCTIONS C1 THROUGH Cé.
IF(ED-11.)1023,1005,1005

SUBROUTINE FOR ARGUMENT GREATER THAN 11 USING
ASYMPTOTIC EXPANSIONS

D01006J=1,46



1011
1012
1013
1014
1015

1016
1008

1009
1007

1010
1006

1023

1024

1026

1027
1028

1030
1032

1034

1033
1031
1036

1038

1037
1035
1029
1040
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_CFJ=1.0
CNJ=1.0
DC1007N=1,415
XN=N__
GOTO(1011,1012,1013,1014,1015,1016),+J
XNJ=2#N#(2%N-1)
60101008
XNJ=2%Nw(2#N+1)
GCT01008
XNJ=2%(N+1)#(22N+]1)
60101008
XNJ=2#(N+1)#(2N-1)
G0T01C08
XNJ=2o# (XN+1o ) #(XN+1os)#(2.%XN+1.)/ XN
GGTOo1008
XNJ=2#(XN+1le)# (XN+1la)#(2.#XN+3.)/XN
CNJ=-CNJ=XNJ/ED2
IF(XNJ-ED2)10C9,1010,1010
CFJ=CFJ+CNJ

FCNJ=CNJ
GOTO1006
CFJ=CFJ-0.5%#FCNJ

CF(J)=CFJ

GOTO1050

IF(ED-1.0)1024,1025,1025

SUBROUTINE FOR ARG. BETWEEN O AND 1
M=1
MM=1

P=ED

PP=ED2

PPP=ED2#EDC2

SI=ED%*(1.0-PP/18.0)
Q=0.5#PP
CI=0.57721567+L0OGF(ED)+0.,25#PP2(-1.0+PP/24.0)
ERROR=1.0E-15

DO1029N=2,59

AN=N

BN=2,0%*AN
CN=2.C#*BN

IF(M)1031,1032,1032
P=P#PPP/( (CN-3.0)#(CN-4.0)*#(CN-5.0)*(CN-6.0))
TERM=P'(1.0/(CN—3.D)-PP/(((CN—l.O)IlZ)'(CN—Z.O)))
IF(ABSF(TERM)-ERROR)1033,1033,1034
SI=SI+TERM
GCTO1031

==1

IF(MM)1035,1036,1036
Q=Q#PPP/((CN-2.G)*#(CN-3.0)#(CN-4.0)*(CN=-5.0))
TERM=-0Q#(1.0/(CN=2+G)=PP/((CN-1.0)=CN=*=2))
IF(ABSF(TERM)-ERROR)1037,1037,1038
CI=CI+TERM
GCTO01035
MM=-1

IF(M)1040,1329,1029
CONTINUE
SSI=SI-1.57079633
SNF=SINF(ED)
CSF=CCSF(ED)
CF(1)=ED#*(SNF#CI-CSF#SSI)
CF(2)=-tD2#(CSF*CI+SNF#SS1)
CF(3)=0.5%ED2%(1.0-CF(1))
CF(4)=0.5%(CF(1)+CF(2))
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C

1025

1045
1046
1047
1048

1050

1051

1052

C
1071

1073

1054
1080

CF(5)=0,25#ED2#(CF(1)=-CF(2))
CFle)=ED2®{CF(2)=CF(3}Y/650

60101052

SUBROUTINE FOR ARG BETWEEN 1 AND 18
A0(1)=38.102495

A2(1)=335.67732

A4(1)=265.187033

A6(1)=38.0272¢64

A0(2)=157.1C5423

A2(2)=570.236280

A4(2)=322.624911

A6(2)=40.021433

A0(3)=21.821859

A2(3)=352,018498

A4(3)=302.757865

A€(3)=42,242855

AOQ(4)=449.690326

A2(4)=1114.978885

A4(4)=482.485984

A6(4)=48.196927

REC=1.C/ED2

DO10471=1,4
QP(I)=RrC#(REC*(REC*AQO(I)+AZ(I))+A4(I))+A6(I)+ED2
CF(1)=QP(1)/QP(2)

CF(2)=QP(3)/QP(4)

CF(3)=0.5#ED2#(1.0-CF(1))
CF(4)=0.5#(CF(1)+CF(2))
EFl5)=0.25%ED2*(CFI1)-CF(2]})
CFL6)=EDZ%(CF(2)-CF(3))/6.0

GOT01C050

BUTRPUTBE CE(J)

WRITEQUTPUTTAPEG,y1082,ETA(IE) »(CF(J)4J=1,6)
CALCULATION OF W FOR ALPHA EQUALS 1.0,1.5
WI(IE)=CST8*CR(9yIR)*#(-2.#CF(2)+2.#CR(1,IR)*CF(1)
1+4(6.#CF(6)+2.%CR(3,IR)=CF(5))/(D*D)+CR(5,IR)*CF(3)/C
2+CR(7,IR)=CF(4))/D
W15(IE)=CSTB8#CR(9,IR)#(-3,#CF(2)+3,#CR(2,IR)*CF(1)
1+(6.#CF(6)+2.#CR(4,IR)#CF(5))/(D*D)+CR(6,IR)=*CF(3)/C
2+CR(8,IR)=CF(4))/0

WRL(IE, IR)=WL(IE)

WR1S(IE,IR)=WI5(IE)

ROUTING AND OUTPUT OF W1, W15

IE=I1E+1

IF{40-1E)1052,1053,1053
WRITEOUTPUTTAPEG,10B3,RHO(IR) y (ETA(IE) yW1(IE),
IW15(IE) s IE=1440)

IR=IR+1

IF(NR-IR)1054,1055,1055

Wly W15 FOR RHO EQUALS 1.0

DC10731E=1,40

E=ETA(IE)
WL(IE)=CST8#(PI#(CR(LyIR)+0.25%CR(3,IR)*E*E
140.25#CR( 7, IR))+0.5%E#CR(5,IR))=E
WIS(IE)=CSTB#(PI#(1.5#CR(2,IR)+0.25%CR(4,IR)*E=E
1+0.25#CR( 8, IR))+0.5%E#CR( 6, IR) ) *E
WR1(IE,IR)=WL(IE)

WRLIS5(IE,IR)=W15(IE) =
WRITEOQOUTPUTTAPEG,1084,E,WL(IE)sW15(IE)

IR=IR+1

IF(NR-IR)1054,1055,1055

CONTINUE

FORMAT(I2/(F12.3))
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1081 FORMAT(1H1F8.3)
1082 FORMAT(FB8.3,6E17.8)
1083 FORMAT(1H1F8.3/(F8.3,2E20.8))
1084 FORMAT(FB.3,2E20.8)
c INTEGRATION OVER G
c G(1,ETA),G(1.5,ETA)FROM PROGRAM 8
C  G(XI) FOR ALPHA EQUALS 1.0
G(1,1)=.20154125
G(192)=.20993569
G(1,3)=.21978752
G(1,4)=.22626457
G(1,5)=.21693650
G(1,6)=.18155049
G(1,7)=.13003021
G(1,8)=.84137466E-1
G(1,9)=.52481723E~-1
G(1,10)=.33041545E-1
G(1,11)=.21327350E-1
G(1,12)=.14224672E-1
G(1,13)=.97755832E-2
Gl1y14)=.69195035E-2
6(1,15)=.50199737E-2
G(1y16)=.37282833E-2
G(1ly17)=.28227726E-2
G(1ly18)=.21768700E-2
G(1,19)=.17043766E-2
G(1920)=.13537167E-2
G(1,21)=.88540018E-3
6(1,22)=.60372003E-3
G(1,23)=.42581421E-3
G(1,24)=.30909523E-3
Gl1,25)=.22985333E-3
G(1,26)=.17456127E-3
G(1,27)=.13498336E-3
G(1y28)=.10606523E-3
G(1,29)=.84515418E-4
G(1,30)=.68194988E-4
G(1,31)=.45863959E-4
Gl1,32)=.31998922E-4
G(1,33)=.23014008E-4
G(1,34)=.16982160E-4
G(1,35)=.12808580E-4
G(1,36)=.98455451E-5
G(1,37)=.76940523E-5
G(1,38)=.61G09600E-5
6(1,39)=.49006505E-5
G(1,40)=.39822131E-5
C G(XI) FOR ALPHA EQUALS 1.5
G(2,1)=.97895779E-1
G(2,2)=.98713586E-1
G(243)=.10012834
G(2,4)=.99914737E-1
G(2,5)=.92933235E-1
G(2,6)=.75519875E-1
G(2,7)=.525925C2E-1
G(2,8)=.33125947E-1
G(2,9)=.20145591E-1
G(2,10)=.12380441E-1
G(2411)=.78127421E-2
G(2,12)=.51004198E-2
G(2,13)=.34359130E-2
G(2,14)=0238665T9E-2
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el

122

23

724

125
730

1085

1061
1060

G(2415)=417014134E-2
G(2,16)=.12429380E-2
G(2y17)=4926T74737E-3
G(2,18)=,70445783E-3
G(2y19)=454421783E-3
G(2420)=.42685848E-3
G(2521)=427293737E-3
G(2,22)=.18244641E-3
G(2,23)=.12646843E-3
G(2,24)=.90412962E-4
G(2425)=.66339907E-4
G(2,26)=.49789584E-4
G(2,27)=.38101513E~-4
G(2,28)=.29663067E-4
G(2,29)=.23443080E-4
G(2,30)=.18778225E~4
G(2y31)=.12473916E-4
G(2432)=.86167022E-5
G(2933)=461473403E-5
G(2434)=.45062138E-5
G(2435)=.33802395E-5
G(2,36)=,25865050E-5
G(2,37)=.20136259E-5
G(2438)=.15915941€E-5
G(2,39)=.12750054E-5
G(2,4C)=.10336716E-5

MULTIPLY BY WEIGHTING FACTORS

D0730J4=1,2
DO7201E=1,19,2
G(JyIE)=G(J,yIE)/3.
DO7211E=241842
G(JyIE)=G(J,yIE) /6.
G(J,20)=G(J,20) /4.
D07221E=21+29+2
G(JyIE)=G(JyIE)/1.5
DO7231E=22+28,42
G(JyIE)=G(J,IE)/3,
G(Jy30)=0.5%G(J,3C)
D07241E=31,39,2
G(JyIE)=G(J,IE)/.T5
DO7251E=32,38,2
G(JyIE)=G(J,yIE)/1.5
G(Jy40)=G(J,40)/3,
WRITECUTPUTTAPEG6,1085

FORMAT(13H1PROGRAM 10A./56H RHO,

1(ETA, RHO, ALPHA))
DO1060IR=1,NR
TZZ1=0.0

TZ215=0.0
DC10611E=1,40

TZZ1=TZZ1+4G(1,IE)*WR1(IE,IR)

TZZ15=T2ZZ15+4G(2,1E)*WR15(IE,IR)
WRITEOUTPUTTAPE6,10844RHO(IR),T2Z1,T2Z15

CALLSYSTEM
END g ]

0

’

1

CONTRIBUTION TC TZZ STRESS FROM W

0

ANL-30



11857/

PROGRAM 14. BCUNDARY CONDITION (AND UZ).
INTEGRALS OF G(ALPHA, ETA) X J2(ETA, RHC) AND

ﬁfTﬂﬁ

C

GUAUPFA, ETA) X W(ETA, RHC) FCR ETA (20, 100, 5)
AND SMALL RHO.
DIMENSICNETA(17)yRHO(15),E3J(17,15),GL(2,17),

IWCL(Z,17),CRUS, 150, WITI7),WIS(I7),WRI(17,15),WR15(17,15),
2A0(4)4,A2(4),A4(4),A€(4),QP(4)+CF(E)
INPUT OF RHOS

6E0

REACTNPUTTAPET,&68C0,NR, (RHC(T),I=1,NR)
FCRMAT(I2/(Fl12.3))
STORING OF ETAS

C

1401

DCI40ITE=1,17
ETA(IE)=15+45+1IE
CALCULATICN OF J2(ETA,RHO)

DCI4CZ2IR=1,NR
R=RHO(IR)
WRITECUTPUTTAPEE,683,R

683

FCRMAT(1IHIF8.2)
CRT=4€3€661977/SQRTF (R)
R2=R#R

R3=R#*R2
R4=R2#R2
F12=((R-1.)/R2)#(-3.6328125%R+.8203125)

F14=((R-1.)/R4)#(-,75942993#R2-4,.0278625#%R2
X-1.047821C=*R-.31723022)
F16=((R-1.)/(R2%R4))#(1.,70759C8#R2#R3+3,41766%R4

X+4.04C6299%R3+3,5044026%R2+2.3519647%R+1.1276543)
F21=(2.375#R-1.875) /R
F23=(-1.7431641%R3+6.8115234#R2-1.9482422+R

X=+.307€61719)/R2
F25=(R4#(.91203690#R+1.4239211)+1.4299393R3
X+1.117515€#R2+.75342178%R+.51549912)/(R2#R3)

F27=(R3%(-4.2488404%R4-3,2017329#R3-,748155274#R2
X+.2336137C#R-.55298433)-1.8727116%R2
X-2.67€81790%R-3.0809127)/(R3#R4)

DCI4031E=1,17
E=ETA(IE)
E2=E*E

604

E4=E2*E2
RE=R+E
SN=SINF(E=(R-1.))

CS=COSF(E=(R-1.))
EJ=CRT#(CS=#(1l.+(FL12+F14/E2+F1€/E4)/E2)
X+(SN/E)=(F21+(F23+F25/E2+F27/E4)/E2))

1605
1403

E3J(IE, IR)=E=E*EJ
E4J=E#E2J(1E,IR)
WRITECUTPUTTAPEE,1480,E,EJ,E3J(IE,IR),E4J

1402

CCNTINUE
PI1=3.14159265
CST8=.81056941

CR FUNCTICNS FRCM PROGRAM 5
DC5031IR=1,4NR
R=RHO(IR)

CR(9,IR)=1./SCRTF(R)
R1=(R-1.)/R
R2=R1#(R+1.)/R

R3=R1#(R#=R+R+1.)/(R#R)
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ALl=-1.875#R1

AL2=-.8203125#R2+3,515625%R1
AL3=.30761719#R3+1.5380859#R2-5.0537109#R1
ALS1=-2.375#R1
ALS2=-3.6328125%R2+5.640625%R1
ALS3=-1.7431641%R3+8.62792795%R2-4.768554T7+#R1
CR(1,IR)=AL1+R#(1.-ALS1)
CR(2,IR)=-0.5+AL1+R#(1.5-ALS1)
CR(3,IR)=-AL1-1.+R#*ALS1
CR(4,IR)=-AL1-0.5+R#(ALS1-0.5)

CR(5,IR)==AL2-AL1+4.875#(R-1.)+R#ALS2
CR(€EyIR)==AL2-0.5%AL1-4.,625+R# (ALS2-0.5#ALS1+5.125)
CR(7,IR)==AL3-AL2-4.B75#AL1+R#(ALS3+4.875#ALS1~-2.5)

CR(8,IR)==-AL3-0.5%AL2-4.625%AL1+0.75+R*(ALS3
X—Ce5#ALS2+45.1252ALS1-1.5)
503 CCNTINUE

IR=1
1055 WRITE OUTPUT TAPE6,1081,RKO(IR)
IF(RHC(IR)-1.)1071,1071,1072

1072 D=RHO(IR)-1.

IE=1
1053 EC=C#ETA(IE)
EC2=EC#ED
C SUBRCUTINE FOR FUNCTIONS CF SINE ANC COSINE INTEGRALS,
c FUNCTIONS C1 THROUGH Cé.

1004 IF(ED-11.)1022,1005,1005
SUBRCUTINE FOR ARGUMENT GREATER THAN 11 USING
ASYMPTOTIC EXPANSIONS

1005 DC100€J=1,46
CFJ=1.0
CNJ=1.0

~ DC1007N=1,15
XN=N
6CT0(1011,1012,1013,1014,1015,1016),J

011 XNJ=2#N=(Z=N-1)
GCTC1lC0e8
1012 XNJ=2%Ns(2#N+1)

GCTO1C08
1013 XNJ=2#(N+1)=(ZeN+1)
GCTC1C08

1014 XNJ=2#(N+1)®(ZN-1)
GCTO1CO08
1015 XNJ=2.%(XN+1o)#(XN+1la)®(2.#XN+1.) /XN

GCTC100¢
1016 XNJ=2.#(XN+1.)#(XN+1.)®(2.%XN+3.)/XN
1008 CNJ=-CNJ*XNJ/ED2

IF(XNJ-ED2)1009,1010,1010
1009 CFJ=CFJ+CNJ
1007 FCNJ=CNJ
GCTC1C06
1010 CFJ=CFJ-0.5%FCNJ
1006 CF(J)=CFJ

GCTO1050 A
1023 IF(ED-1.0)1024,1025,1025
C  SUBROLTINE FOR ARG. BETWEEN O AND 1
1024 M=1 - EEEETEETS
MM=1
P=EC
PP=ED2
PPP=EC2#EC2
 SI=EC#(1.0-PP/18.0)
1026 Q=0L.5%PP = -




1139

CI=0.57721567+LOGF(ED)+0,25#PP#(-1.0+PP/24.0)

— 1027
1028

— BN=Z.U#®AN

1020

ERROR=1.0E-15
DC1029N=2,50

AN=N
CN=2.0#8N
IF(M)1031,1032,1032
=P= =3.0)= =4.01={CN-5.C0)=(CN-6.01))

TERM=P#(1.0/(CN-3.0)=-PP/(((CN-1.0)##2)#(CN=-2.0)))
IF(ABSF(TERM)-ERROR)1033,1023,1034

~ 1034
1033

ST=ST+TERW
6CT01031
M=-1

1031
1036

TF(MM)1035,1036,1036
Q=Q#PPP/((CN-2.0)%(CN-3.0)#(CN-4.0)*»(CN-5.0))
TERM=-Q#(1.0/(CN-2.0)-PP/((CN-1.0)#CN=»2))

1028

IFTABSF(TERM)-ERROR)1037,1027,1038
CI=CI+TERM
GCTC1C35

~ 1037
1035
1029

MF=-1
IF(M)1040,1025,1029
CCNTINUE

~ 1040

SSI=SI-1.5707%633
SNF=SINF(ED)
CSF=CCSF(ED)

CF(1)=EC#(SNF=CI-CSF#*SSI)
CF(2)=-ED2#(CSF#CI+SNF#*SSI)
CF(3)=0.5#ED2#(1.0-CF(1))

CFl4)=0.5=(CF(1V+CF(2])
CF(5)=0.25#ED2#(CF(1)-CF(2))
CF(6)=EC2#(CF(2)-CF(3))/6.0

1025

GCTO1C50
SUBROUTINE FOR ARG BETWEEN 1 AND 18
A0(1)=38.102455

AZ(1)=335.67732
A4(1)=265.187C32
AE(1)=38.0272€4

AT(2)=157.105423
AZ(2)=570.23628C
A4(2)=322.624911

AE(2)=40.021423
AC(3)=21.€218659
A2(3)=352.018498

A4(37=302.757865
A€(3)=42.242855
AQ(4)=449.690226

AZ(4)=1114.978€885
A4(4)=482.485984
AE(4)=48.196927

1045
1046
1047

REC=1.0/EC2
DC10471=1,4
QP(I)=REC#(REC*(REC®*AQ(I)+A2(TI))+A4(I))+A6(TI)+EC2

1048

CF(1)=QP(1)/QP(2]
CF(2)=QP(3)/QP(4)
CF(3)=0.5#ED2#(1.0-CF(1))

CF(4)=0.5+(CF(1)+CF(2))
CF(5)=0.25#ED2#(CF(1)-CF(2))
CF(6)=EC2#(CF(2)-CF(3))/6.0

GCTO1C50
OUTPUT CF CF(J)
WRITECUTPUTTAPEE,1082,ETA(IE) 4 (CF(J),J=1,6)

1050
c

CALCULATICN OF W FOR ALPHA EQUALS 1.0,1.5
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W1(IE)=CSTB#CR(9,IR)#(-2,#CF(2)+2.#CR(1,IR)*CF(1]}

1+(6.#CF(6)+2.#CR(3,IR)#CF(5))/(D*D)+CR(5,IR)#CF(3)/D
2+CR(7,IR)#CF(4)) /D
WIS(IE)=CSTB#CR(9yIR)# (-3, #CF(2)+3.#CR(2,IR)#CF(1)

1+(6.#CF(6)+2.#CR(4,IR)*CF(5))/(D#D)+CR(6,IR)=CF(3)/0
2+CR(8,IR)#CF(4))/0
WRL(IE,IR)=W1(IE)

C
1051

WR1S5(IE,IR)=W15(IE)
RCUTING AND OUTPUT OF Wl, W15
TIE=1E+1

1052

IF(17-1€)1052,1053,1053
WRITECUTPUTTAPE6,1481,RHO(IR), (ETA(IE) yWRL(IE,IR),
1WR1S(IE,IR) 4 IE=1,17)

IR=IR+1
IF(NR-IR)1054,1055,1055
Wl, W15 FOR RFO EQUALS 1.0

1071

DC10731E=1,17
E=ETA(IE)
W1(IE)=CSTB#(PI#(CR(1,IR)+0.25#CR(3,IR)*E«E

1+C.25*CR(7,IR))+0.5%E*CR(5, IR))*E
W15(IE)=CSTB» (PI#(1.5%CR(2,IR)+0.25#CR(4,IR)*E=E
1+0.25#CR(8,IR))+0.5#E#CR(6,IR))*E

1073

WRL(IE,IR)=W1(IE)
WR1S5(IE,IR)=W15(IE)
WRITECUTPUTTAPEE,1482,E,WR1(IE,IR),WRI5(TE,IR)

1054

IR=IR+1
IF(NR-IR)1054,1C55,1055
CCNTINUE

1081
1082
c

FCRMAT(1H1F8.3)
FCRMAT(FB8.3,6E17.8)
INTEGRATION OVER G(ALPHA, ETA), ETA(20, 100)

C

G(XI) FOR ALPHA EQUALS 1.0
GL(1,1)=.39822131E-5
GL(1,2)=.16191809E-5

GL(1,2)=.77825388E-6
GL(1y4)=.419427¢€8E-6
GL(1,5)=.24570713E-6

GL(1,€)=.1533€414E-6
GL(1,7)=.10062709E-6
GL(1yE)=4687415€1E-17

GL(1,9)=.48547457E-17
GL(1,10)=.3525571CE-7
GL(1,11)=.26218130E-7

GL(1,12)=.19°00146E-7
GL(1,13)=.15375868E-7
GL(1,14)=.12067421E-7

n‘

GL(1,15)=.96028132E-8
GL(1416)=.773€4523E-8
GL(1,17)=.63023160E-8

G(XI) FOR ALPHA EQUALS 1.5

GL(2,1)=.1033¢€716E-5
GL(2,2)=44171€614E-6

GL(293)=.1997666TE-6
GL(2,4)=.10745263€E-6
GL(2,5)=.6287E519E-7

GL(2,€)=.239223833E-7
GL(2,7)=.25727620E-17
GL(24€)=.17572366E-17

GL(2,5)=.124069252E-7
GL(2,10)=.90115547E-8
GL(2,11)=.67015941E-8

GL(2,12)=.50868314E-8



GL(2y15)=.24550185E-8
GL(2,16)=.19779795E-8
— GL{Z,I7)=.16113Y82E-8
C MULTIPLY BY WEIGHTING FACTCRS
DC171CJ=1,2

G INTERVAL (20, 1ITO)
WCEL(Jy1)=GL(Jy1)/0.6
DC17111E=2,416,42
I7IT WCLUJ,TIE)=GL(J,IEN/0.15 =
DC17121E=3,15,2
1712 WCL(JyIE)=GL(J,IE)/0.3
WGL(J,17)=GL{J,17)/0.6 T
1710 CCNTINUE
WRITECUTPUTTAPEE,1483
DC1404IR=1,NR T : P AT
T221=C.0
T2215=0.0
UzZ1=0.0 ¥ P O Y F e < T L e e
uz15=C.C
DC14051€=1,417
TZZI1=TZZI+WGL(1,IE)*E3U(TE, IR)*ETA(IE)
T2215=TZZ15+WGL(2,IE)*E3J(IE,IR)*ETA(IE)
UZ1=UZ1-WGL(1,IE)*E3J(IE,IR)
“1405 UZ15=UZ15-1.5%WGL(2,TE)#*E3J(TE,IR) ST L L e
WRITECUTPLTTAPEE,1484,RHO(IR),T221,T2215,UZ1,UZ15
14C4 CCNTINUE
WRITECUTPUTTAPEE, 1485
DC140€IR=1,NR
T221=0.0
T2715=0.0
DC14071E=1,17
T221=TZZ1+WGL(1,IE)*WRL(IE,IR)
“T407 TZZIS=TZZIS+WCL(2,TEV*WR1IS(IE,IR) =
WRITECUTPUTTAPEE,1486,RHO(IR),TZ221,T2Z15
14C6 CCNTINUE
1480 FCRMAT(F12.3,2E20.8)
1481 FCRMAT(1H1FB8.3/(F12.3,2E2C.€))
1482 FCRMAT(Flz.3,2E20.8)
1483 FCRMAT(12F1IPRCGRAM 14./4H RFC/50H CCNTRIBUTION CF J2 TERM TO TZZ71,
1 TZZ15, UZl, ULZ15/13H ETA(2C, 100))
1484 FCRMAT(F12.3/4E20.8)
1485 FCRMAT(12F1PRCGRAM 14./4H RFO/51H CCNTRIBUTION TO TZZ STRESS FRCM
1W(ETA, RHO, ALPHA)/13H ETA(20, 100))
1486 FCRMAT(Fl2.3/2E20.8)
CALLSYSTEM
END  ( 1, 1, 0 1, 0 ) ANL-30

141



142

PROGRAM 11. BOUNDARY CONDITION AND UZ.

[aXaXallal

CALCULATION OF TERMS INVOLVING J2(ETA, RHO)
FOR ETA INTERVALS OF 0.01.
PARABOLIC INTERPOLATION USED FOR VALUES OF G(ETA).

DIMENSIONGZ(2),G(2,40)yRHO(10) 4X(2,2000) yA(2,40)4B(2,40)
1C(2440),T22(2,10),UZ(2,10),CRT(10)4RF(7,410),TABJ(120),
2TABY(120),TABS(120),TABX(120)

680

READINPUTTAPE7,680,NRy (RHO(I)4I=14NR)
FORMAT(I12/(F12.3))
DO1150IR=1,4NR

R=RHO( IR)
R2=R#*R
R3=R#R2

R4=R2#R2
CRT(IR)=463661977/SQRTF(R)
F12=((R-1.)/R2)#(-3.6328125#R+.8203125)

F14=((R-1.)/R4)#(-.759429934R3-4,0278625%R2
X-1.0478210#R-.31723022)
F16=((R-1.)/(R2#R4))#(1.7075908#R2#R3+3,41766#*R4

X+4.0406299#R3+3.5044026#R2+2.351964T#R+1.1276543)
F21=(2.375#R-1.875) /R
F23=(-1.7431641#R3+6.8115234%R2-1.9482422*R

X-+30761719)/R3
F25=(R4#(.91203690#R+1.4239311)+1.4299393#R3
X+1.1175156#R2+.75342178#R+.51549912)/(R2#R3)

F2T=(R3#(-4.2488404%R4~-3,2017329#R3-,74815527%R2
X+.23361370#R-.55298433)-1.8727116#R2
X-2.6781790#R-3.0809127)/(R3%R4%)

RF(1,IR)=F21
RF(2,IR)=F12
RF(3,IR)=F23

RF(4,IR)=Fl4
RF(5, IR)=F25
RF(6,IR)=F16

RE(T7,IR)=F27
TZZ(1,1IR)=0.0
TZZ(2,1R)=0.0

1150

Uz(1,1IR)=0.0
UzZ(2,1IR)=0.0
CONTINUE

(e Nl

G(1,ETA)yG(1.5,ETA)FROM PROGRAM 8
G(XI) FOR ALPHA EQUALS 1.0
G(1,1)=.20154125

G(1,2)=.20993569
G(1,3)=.21978752
G(1,4)=.22626457

G(1,5)=.21693650
G(1l,6)=.18155049
G(1,7)=.13003021

G(1,8)=.8413T7466E-1
G(1,9)=.52481723E~-1
G(1,10)=.33041545E-1

G(1,11)=.21327350E~-1
G(1y12)=.14224672E-1
G(l,13)=,97755832E-2

G(1,14)=,69195035E~-2



G(1,15)=.50199737E-2

G(1,16)=.37282833E-2
G(1y17)=.28227726E-2
G(1,18)=,21768700E-2

G(1,19)=.17043766E-2
G(1,20)=413537167E-2
G(1+21)=.88540018E-3

6(1,22)=.60372003E-3
G(1,23)=.42581421E-3
G(1,24)=.30909523E-3

G(1425)=.22985333E-3
G(1926)=e17456127E-3
G(1,27)=.13498336E-3

G(1,28)=.10606523E-3
G(1,29)=.84515418E-4
G(1,30)=,68194988E-4

G(1,31)=.45863959E-4
G(1,32)=.31998922E-4
G(1,33)=.23014008E-4

6G(1,34)=.16982160E-4
G(1,35)=.12808580E-4
G(1,36)=.98455451E~-5

G(1y37)=.76940523E-5
G(1,38)=.61009600E-5
G(1,39)=,49006505E-5

G(1,40)=.39822131E-5
C G(XI) FOR ALPHA EQUALS 1.5
G(2,1)=.97895779E-1

G(2+2)=.98713586E~-1
6(2,3)=.10012834
G(2,4)=.99914737E~-1

G(2,5)=.92933235E~-1
G(2,6)=.75519875E-1
G(2,7)=.52592502E~1

G(2,8)=.33125947E~1
6(2,9)=.20145591E-1

R C12y10)=,12380441E-1 ol o

G(2,11)=.78127421E-2
G(2412)=.51004198E-2
_ 6(2,13)=.34359130E-2 &
G(2,14)=.23866579E-2
G(2515)=417014134E-2
_ 6(2,16)=.12429380E=-2

G(2917)=.92674737E-3
G(2,18)=.70445783E-3
_ G(2,19)=.54421783E=3

G(2,20)=.42685848E-3
G(2921)=.27293737E-3

_ G(2422)=.18244641E=3
G(2923)=.12646843E-3
6(2924)=.90412962E-4
6(2,25)=.66339907E=-4

G(2526)=.49789584E-4
G(2,27)=.38101513E-4

G(2,28)=.2966306T7E-4

G(2429)=.23443080E-4
G(2430)=.18778225E-4

G(2,31)=,12473916€E-4

6(2,32)=.86167022E-5
G(2933)=.61473403E-5

_ G(2434)=.45062138E-5 : Al im

G(2,35)=.33802395E-5

143
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G(2,36)=.25865050E-5

G(2937)=.20136259E-5
6(2,38)=.15915941E-5
G(2,39)=.12750054E-5

G(2,40)=.10336716E-5

(% CALCULATION OF INTERPOLATION CONSTANTS.
GZ(1)=.19634954
GZ(2)=.09817477
DO1101J=1,2

C  INTERVAL (04.5)

c

[

FD=GZ(J)-2.%G(J,1)+G(J,2)
A(Jy1)=8.%FD

C(J.l)-G SO(FDOGZ(J)-G(J.Z)IOG(Jul)
D011021E=1,50
E=0.01#FLOATF(IE)

1102 X(J,IE)= (A(J'l,.E.E*B(Jvl).E*C(J 1))s(Exss)
INTERVALS («551)y (1,15),(1e552)
~ DO1103K=3,7,2
FD=G(JsK-1)~- 2.'G(J'K)*G(J'K’l)
A(J,K)=8.#FD
X2=0.25*FLOATF(K) >
B(JyK)=-16.'X2.FD*2-’(G(J|K*1) G‘JvK -1))
C(JpK)=8.#X2#X2#FD+2.,#X2#(G(JyK-1)-G(JyK+1))+G(J,K)
DIK=I2S¥K=28 = sl
IKK=252K+25
DO1104IE=1K, IKK
S E=0 01 FLOATECTIE) . &7
1104 X(J'lE)'(A(JyK)'E'E*B(J'K).E4C(J'K))'(E"‘)
1103 CONTINUE
_INTERVALS (2, 2.5) THROUGH (4.5, 5)
DO1105K=9,19,2
X2=0.25#FLOATF(K)
_F2=G(JyK)#(X2#u4)

F1=G(JsK-1)#((X2-0.25) #=4)
F3=G(JyK+1)#((X240.25)#%4)
FD=F1-2.#F2+F3
A(JyK)=8.=FD
B(JyK)=-16.#X2#FD+2.#(F3-F1)

_ClJyK)=B, #X28X2#FD+2,#X2% (F1-F3)+F2
IK=25#K-24
IKK=25%K+25

EEDO1TO6TF-TReIRK " .. -~ = % Lo Gue
E=0.01#FLOATF(IE)

1106 X(JoIE)=E#(A(J,K)#E+B(J,K))+C(J,K)

_ 1105 CONTINUE

C

INTERVALS (5, 6) THROUGH (9, 10)
DO 1107K=21,29,2
X2=0.5#FLOATF(K-10)
F2=G(J,K)#(X2%%4)
F1=G(JyK-1)#((X2-0.5)%=4)
_F3=6(J,K+1)#((X2+0,5)#%4)
FD=F1-2.#F2+F3

A(JyK)=2.%FD
BlJsK)==4,2X2#FD+F3-F]
ClJyK)=2.2X2X2#FD+X2#(F1-F3)+F2
IK=50#K-549

IKK=50#K-450

DO110BIE=1IK, IKK
E=0.01#FLOATF(IE)

1108 X(Jy IE)=E#(A(J2K)*E+B(J,K))+C(JaK) bS5, SR

1107 CONTINUE



20)

DO1109K=31,39,2
X2=K-20
F2=G(J,K) #(X2%%4)

F1=6(J,K-1)#((X2-1.0)w4)
F3=G(J,K+1)#((X2+1.C)wn4)
FD=F1-2.#F2+F3

A{JsK)=0.5#FD
B(JyK)=-X2#FD+0.5%(F3-F1)
ClJyK)=0o5#X2#X2#FD+0,5#X2# (F1-F3)+F2

IK=100#K-2099
IKK=100#K-1900
DO111CIE=1K, IKK
E=0.01#FLOATF(IE)
1110 X(J,IE)=E*(A(J,K)*E+B(J,K))+C1JyK)
1109 CONTINUE
1101 CONTINUE
WRITEOUTPUTTAPE6,1180

1180 FORMAT(70H1K, INTERPOLATION CONSTANTS FOR INTERVAL CENTERED ON G(J

1y K)y J = 1, 2)
DO1111K=1,39,2

_ WRITEOUTPUTTAPE6211813KsA(LsK)sB(1sK)sClLsK)oAl24K)4BI2,K)sCU2,K)

1181 FORMAT(I2/3E20.8/3E20.8)
1111 CONTINUE
DO11121E=1,2000 a0
E=0.01*FLOATF(IE)
21=BESJF(E»0e+1+120,XLOCF(TABJ))
22=BESYF(E»0.21,120,XLOCF(TABY)) =

AJO=TABJ(1)

AJ1=TABJ(2)

AY0=TABY(1) B st L e
AY1=TABY(2)
AJ2PR=(1.0-4.0/(E*E))*#AJ1+2.4AJ0/E

_ AY2PR=(1.0-4.0/(E*E))#AY1+2.%AYO/E
DO1113IR=1,NR
R=RHO( IR)

__RE=E=*R : el

1F(20.-RE)604,605, 605

605 Z3=BESJF(REy0.,1,120,XLOCF(TABS))
24=BESYF(REs0.41,120,XLOCF(TABX))
AJRO=TABS(1)
AJR1=TABS(2)
______AYRO=TABX(l1) e S

AYR1=TABX(2)

AJ2=2.#AJR1/RE-AJRC

_ AY2=2.®#AYR1/RE-AYRO V. SR e o

AJ=AY2PR®*AJ2-AJ2PR®AY2
GOTO606
604 SN=SINF(E#(R-1.))
CS=COSF(E#(R-1.))
E2=E+E
E4=E2%E2
AJ=CRT(IR)#(CS=(1. #(RF(Z:IR)+RF(4:IR)/E2
1+RF (6, IR) /E4) /E2) JE+(SN/E2) #(RF(1,IR)
._A,AZALEEL3;JEJ+Bfi§nIBJIEZORF(7,IR)IE511£211
606 IF(1999-1E)111451115,1115
C INTEGRATION USING TRAPEZOIDAL RULE

1115 TZZ(1,IR)=TZZ(1,IR)+AJ=X(1,IE)

TZZ(24IR)=TZZ(2,IR) +AJ2X(2,IE)
UZ(1,IR)=UZ(1,IR)+AJeX(1,IE)/E

;7~H_.UlLZ;lKJ-uli241311A4411241511£*7 = SRS

GOTO1113
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1114 T2Z(1,IR)=(TZZ(1,IR)+AJ*X(1,1E)#0.5)#0.01
TZZ(24IR)=(TZZ(2,IR)+AJ#X(2,IE)#0.5)#0.01
UZ(1yIR)=(UZ(1,IR)+AJ*X(1,IE)#0.5/E)#0,01
UZ(2,IR)=(UZ(2,IR)+AJ#X(2,1E)*0.5/E)#0.01

1113 CONTINUE

1112 CONTINUE
WRITEOUTPUTTAPE6,1182

1182 FORMAT(4H1RHO/64H CONTRIBUTION OF J2 TERM TO T2Z1, TZZ15, UZl, UZl

15 FOR LARGE RHO)
DO1116IR=14NR

WRITEOUTPUTTAPEG6,1183,RHO(IR) ,TZZ(1,1R),
1TZZ(2,IR),UZ(1,IR),UZ(2,4IR)
1183 FORMAT(F12.3/4E20.8)

1116 CONTINUE
CALL SYSTEM
END 1. 1 0 i 0 )

ANL-30
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PROCRAM 7. STRESSES ON HOLE IN HALF-SPACE
FCOR VARIOUS ZETAS, ALPHA IS 1, 1l.5.

SUM OF PROGAMS 2,3,4, MULTIPLIED BY G AND INTEGRATEC.
DIMENSIONETA(4C) ,S(4041556),71(6)4ZE(15),V(6),
1TABR(66),6(2,40)4STRS(6)

380

INPUT OF ZETAS
READINPUTTAPET,380yNZy(ZE(I),yI=1,N2Z)
FORMAT(I2/(F12.3))

701

STORING OF ETAS
DO7C1IE=1,20
ETA(IE)=0.25#FLOATF(IE)

702

DC7021E=21,30
ETA(IE)=-5.+0.5#*FLOATF(IE)
DO7031E=31,40

703

ETAUIE)=IE-20
CST=2.7018982&E-2
BSI2=5.4037965E~-2

INTEGRATION OVER GAMMA FRCM C TO 10
INITIALIZATION OF S
DC701Z2=1,4NZ

DC704IE=1,40
S(IEsI1Z,1)=-0.5
S(IE,1Z2,42)=-2.5

S(IEyIZ2,3)=0.75
S(IEs12,4)=C.625
S(IE,I2,5)=6.%ZE(1Z)

704
70

S(IE,1Z,6)=12.%Z2E(12Z)
CONTINUE
ROUTING

JG=1
IG=1
GCTO3

134

140

IG=16+2
IF(10C-16)1404+136,3
JG=2

136

1G=2
GOTC3
JG=3

GCTO3
IE=1E+1
IF(40-1£)131,705,705

[Z=12+1
IF(NZ-1Z2)133,132,132
GOTO(134,4134,413),J46

FUNCTIONS OF GAMMA
G=0.1%FLOATF(IG)
G2=G#*G

Z1=BESKF(Gy0.y1466,XLOCF(TABR))
AKO=TABR(1)
AK1=TABR(2)

AK=—(2.+(G2*AK1)/ (G*AKO+2.#AK1))
AKSQ=AK*AK
FFC=G2#({G2+8.-2+®AK)+12.

FFGl=G2+4.-AKSQ
HG=G2-(G2+3.) *AK
DELTA2=-4.*02¢AK¢(8.'62+24.—GZ!AK-6.'AKSQ)

DEL1=FFGL*FFG+DELTA2

147




148

DEL15=FFG1#FFG+1.5%DELTA2
TZ11==14+(G2/DELL)*(-G2#(G2+9.)-12.+(2.#G2+3,) #AK
X+(G2+3.)#AKSQ)
T221=G2+2.5+(G2/DEL]1)*((FFG1-2,*AK)#FFG=4.*HG)
TZ115==1.+(G2/DEL15) #(-G2#((G2+9+)-12.+(2.%#G2+1.5)*AK
X+(G2+3. ) #AKSQ)
T2215=62-0.5#G+0.75+(G2/DEL15)*((FFG1-2,#AK) #FFG
X=6+%HG)

T0l1=-3.#(1.+G2#HG/DEL1)
TC21=3.#(G2-0.5#6+3.25-G2#AK*FFG/DEL1)

TC115=-2+5#(1++G2#HG/DEL15)
TD215=2.5#%#(G2-G+3.75-G2*AK*FFG/DEL15)
TT11=-1.+1.5/G+(G/DELL) #(4.#G2#(G2+7.)+48.+AK*

X(—=G2#(G2+44)+12.)-AKSQ# (4.%G2+12.) +(G2-3. ) #AK*AKSQ)
TT21=-0.5+2.25/G+(G/DELL) * (~FFGL#FFG+(4.—AKSQ) #HG)
TT115=—1.43.5/G+(G/DELL5) % (4. #G2%(G2+7. ) +48. +AK*

X(=G2#(G2+4+ ) +18s)—AKSQ*(4.#GC2+12.)+(62-4.5) *AK*AKSQ)
TT215=-0.5%6+3.375/G+(G/DEL15) % (~FFGLl#FFG+(6.-1.5%AKSQ) *HG)
17=1 K

132 SN=SINF(G*ZE(1Z))
CS=COSF(G*ZE(1Z2))
1E=1

705 E=ETA(IE)#ETA(IE)/(ETA(IE)*ETA(IE)+G2)
T(L)=E#(2.#TZ11+E#T221)*CS
T(2)=E#(3.,#TZ115+E#T72215)*CS
T(3)=E#(2.#TD11+E*TD21)%CS
T(4)=E#(3.#TD115+E#TD215) *CS
T(5)=E#(TT11+2.#E#TT21)*SN

T(6)=E#(1.5#TT115+42.%E#TT215) #SN
GOTO(50,51952),J6G
€ SUMMATIONS

50 DO6CIS=1,6
60 S(IEyIZ4IS)=S(IEyI1Z,1S)+4.#T(IS)
GOT010

51 DC61IS=1,6
61 S(IEZIZyIS)=S(IEyIZyIS)+2.#T(IS)
GOTO010

52 DC621S=1,6
62 S(IE,I1Z,1S)=CST#(S(IE,IZ,IS)+T(IS))
GOTO10

C INTEGRATION OVER GAMMA FRUM 10 TO 100
& GAMMA ROUTING
13 JG=1

G=10.
GOT0303
311 JG=2

o=t
GCTO312
315 1G=1G+2 ey
IF(450-16)316,319,312
316 JG=3
16=2
GOT0312
319 JG=4
Ve G0T0312
€ ETA LOOPING
306 IE=IE+1
_ IF(40-1£)308,307,307
c ZETA LOOPING
308 12=12+1
= IF(NZ-12)310,309,309
310 GOTO(311, 3152153221306




2]

C FUNCTIONS OF GAMMA IN INTEGRANDS
[ N ORERPANSIONS =~ T 8. 122, b Fa Nt il iy e
312 G=1C.+0.2*FLOATF(IC)
303 G2=G+*G
G3=G2+*G
D1=-062%G3-3.#G2#G2-10.125%G3-¢€.75=C2
X+5.4140625%#G-16.875+8.7451172/G+84.375/G2
D15=-G2#G3-3.5#G2#52-11.625%G3-8.25%G2
X+5.9765625#6-16.875+12.084961/6+74.53125/G2
TZ11=(4.5#G3+12.75#(2-21.9375#G+25.3125
X+29.355469/G-274.21875/G2)/C1
T221=(-3.75#G2%#G2+13.5#G3-49.3125%G2
X+32.34375%G+160.3125)/D1
TZ115=(0.5#G2#G2+7.5%G3+15.#62-19.6875%G
X+22.5%27.597656/6-262.26563/621/D15
TZ215=(2.4375#G2#G2+25.03125%63-40.863281*G2
X+21.708984#G+182.39502)/D15
TC11=(4.5#G2#G2+15.75%G3+21.375%62-36.28125%G
X+63.28125-13.974609/G6-329.0€25/6G2) /D1
TO21=(-3.9375%G2#G2+0.5625%G3-124.83984+G2
X+156.41016#G+71.257324) /D1
TD115=(5.%#G2#G2+16.875#G3+21.56252G2-31,640625%G
X+52.734375-19.995117/G-249.€60938/G2) /D15
T0215=(0.9375#G2%62-12.65625%G3-134.70703%62
X+171.82617#G-5.603C0273) /D15
TT11=(10.125%G3-6.75%G2-32.414063%G+61.382813
X-74.838867/6-95.185547/6G2)/C1
TT21=(-0.5625%63-30.9375#G2+43.1992188#G
X+18.246094-166.09131/G) /D1
TT115=(6.125%G3-27.1875%62-54.539063+G
X+77.167969-115.44434/6-59.919434/G2)/D15
TT215=(-7.875#G3-57.375%G2+3.796875*G
X+11.601563-227.8125/G) /D15
c CALCULATION OF COMPLETE INTEGRAND INVOLVING ZETA, ETA
12=1
309 SN=SINF(G*ZE(IZ))
CS=COSF(G=ZE(IZ))
IE=1
307 E=ETA(IE)*ETA(IE)/(ETA(IE)*ETA(IE)+G2)
T(1)=E={2.#TZ11+E#TZ21)%CS
T(2)=E*(3.%TZ115+E#*TZ215)*CS
T(3)=E#(2.*TD11+E#TD21)*CS
T{4)=E#(3.#TD115+E#TD215)*CS
T(5)=E#(TTL1+2.%E=T1T21)*#SN
T(6)=E*(1.5%TT115+2.#E=#TT215)*SN
GOTO(706,707,708,+709),J4G
C SUMMATIONS
706 DO7101S=1,6
710 S(IE,1Z,1S)=S(IE,1Z,1S)+CST2*T(IS)
GOT0306
707 DO7111S=1,6
711 S(IEy1Z,1S)=S(IE,1Z,1S)+4.#CST2+T(IS)
GOT0306
708 DO7121S=1,6
712 S(IE,12,15)=S(1E,12,15)+2,#CST2*T(IS)
GOT0306
709 DO7131S=146
713 S(IEs1Z,1S)=S(IE41Z,1S)+CST2#T(IS)
GOT0306
322 DOT71412=1,4NZ
NRITEUUTPUTTAPE6,780yZE(IZ),(ETA(IE).(S(IE,IZ'XSM
XI1S=1,6),1E=1,40)




150

714 CONTINUE

C

780 FORMAT(1H1F7.3/(FB.3,6E17.8))
TERMS IN ETA
C1=.63661977

D04031Z=1,NZ
ZT=2E(12)
WRITEQUTPUTTAPEG,481,2T

481 FORMAT(1HLF7.3)
DO7151E=1,40
ET=ETA(IE)

EEZ=Cl*EXPF(-ZT#ET)
V(1)=EEZ# (2., #2T#ET#%4=2 5%ET#ET#ZT+1.5#ET)
VI2)=EEZ# (2. %2 T#ET##4-0,T52ET#ET#ZT+5,25%ET)

V(3)=EEZ® (3., #ZT#ET##4=9 TS#ET#ET#ZT+2,25%ET)
VI4)=EEZ#(2.5#ZT#ET##4=-9,375#ET*ET#ZT+5.625%ET)
V(5)=EEZ# (2., #2T#ET##344,5#ET#2T)-12.#(C1-EEZ)

V(6)=EEZ#(3.#ZT#ET#%3+6.75#ET#2T)-24.%(C1-EEZ)
DO7161S=1,6
716 S(IE,12,15)=V(IS)+S(IE,IZ,1IS)

WRITEOUTPUTTAPEG, 781 4ET,(S(IE,IZ,41S),15=1,6)
781 FORMAT(FB.3,6E17.8)
715 CONTINUE

403 CONTINUE
WRITEOQOUTPUTTAPEG6, 790
790 FORMAT(1H1)

o000

INTEGRATION OVER G(ALPHA,ETA)
G(l,ETA),G(1.5,ETA)FROM PROGRAM 8
G(XI) FOR ALPHA EQUALS 1.0

G(1,1)=.20154125
G(1,2)=.20993569
G(1,3)=.21978752

Gl1ly4)=.22626457
G(145)=.21693650
G(1,6)=.18155049

G(1,7)=.13003021
G(1,8)=.84137466E-1
G(1,9)=.52481723E~-1

G(1,10)=.33041545E-1
BTy 1= 21 227350E-1
G(1,12)=.14224672E-1

GILy13)=097755832E~-2
G(1,14)=.69195035€E-2
G(1,15)=.50199737€-2

G(1,16)=.37282833E-2
G(1y17)=.28227726E-2
G(1,18)=.21768700E-2

G(1,19)=.17043766E-2
G(1,20)=.13537167E-2
G(1,21)=,88540018E-3
G(1,22)=.60372003E-3
G(1,23)=.42581421E-3
G(1,24)=,30909523E-3
G(1,25)=.22985333E-3
G(1ly26)=.17456127E-3
G(1,27)=.13498336F-3
G(1,2€)=.10606523E-3
G(1,29)=.84515418E-4
G(1930)=.6b194988E-4
G(1y31)=.45863959E-4
G(1432)=,31998922E-4
G(1y33)=.23014008E-4
G(1y34)=,16982160E-4




G(1,35)=.12808580E-4

G(1,36)=.98455451E~5
G(1,37)=.76940523E-5
G(1438)=.61009600E-5

G(1,39)=.490C€505E-5
G(1,4C)=.39822131E-5

G(XI) FOR ALPHA EQUALS 1.5

G(2,1)=.978957T7T9E-1
G(2,2)=.98713586E~-1
G(2,3)=.10012834

G(2,4)=.99914737€E-1
G(2+5)=.92933235E~-1
G(2,6)=.75519875€E-1

G(2,7)=.52592502€E-1
G(2,8)=433125947E-1
G(2,9)=.20145591E-1

G(2,10)=.12380441E-1
G(2,11)=.78127421E-2
G(2,12)=451004198E-2

G(2,13)=.34359130E-2
G(2,14)=.23866579E-2
G(2,15)=.17014134E-2

G(2,16)=.12429380E-2
G(2,17)=.926T74737E-3
G(2,18)=.70445783E-3

G(2,19)=.54421783E-3
G(2,20)=.42685848E-3
G(2,21)=427293737E-3

G(2,22)=.18244641E-3
G(2,23)=.12646843E-3
G(2,24)=.90412962E-4

G(2,25)=.66339907E-4
G(2y26)=449789584E-4
G(2,27)=.38101513E-4

G(2,28)=.29663067TE~-4
G(2,29)=.23443080E-4
G(2,30)=.18778225E-4

G(2,31)=.12473916E-4
G(2,32)=.86167022E-5
G(2,33)=,61473403E-5

G(2,34)=.45062138E-5
G(2,35)=.33802395E-5
G(2,36)=.25865050E-5

G(2,37)=.20136259E-5
G(2,38)=.15915941E-5
G(2,39)=.12750054E~-5

G(2,40)=.10336716E-5

MULTIPLY BY WEIGHTING FACTORS

D0730J4=1,2

720

DO7201E=1,19,2
G(J,IE)=G(J,1E)/3.
DO7211E=2,18,2

721

G(J,[E)=G(J,IE) /6.
G(J,20)=G(J,20)/4.
DO7221E=21,29,2

722

723

G(JyIE)=G(JyIE) /1.5
DC7231E=22,28,2
G(JyIE)=G(J,IE) /3.

124

G(Js30)=0.5%G1(J,30)
DO7241E=31,39,2
G(J,yIE)=G(J,IE)/.T5

DO7251E=32,38,2

151



25

G(Jy IE)=G(J,yIE)/1.5

730

G(Jy40)=G(J,40)/3.
WRITEOUTPUTTAPE6, 782, (ETA(IE) yG(1,1E),G(2,1E),1E=1,40)
FORMAT(F7.3,2E20.8)

WRITEOUTPUTTAPEG6, 790
DC07261Z=1,4N2Z
DO7271S=1,6

727

STRS(15)=0.0
DO728I1E=1,40
STRS(1)=STRS(1)+G(1,IE)*S(TE,I1Z,1)

STRS(2)=STRS(2)+G(2,1E)*S(I1Es1Z,2)
STRS(3)=STRS(3)+G(1,IE)*S(IE,1Z2,3)
STRS(4)=STRS(4)+G(2,1E)*S(IE,1Z,4)

728
726

STRS(5)=STRS(5)+G(1,IE)*S(IEy1Z,45)
STRS(6)=STRS(6)+G(2,IE)*S(IEsIZ,6)
WRITEOUTPUTTAPEG6, 783,27, (STRS(IS),15=1,6)

783

FORMAT(F7.3/6E17.8)
CALLSYSTEM
END ( $h 1, 0 1, 0 )

ANL-30
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3%6

308

312
303

PRGGRAM 3A. EVALUATION OF STRESS INTEGRALS
FCR GAMMA (100,2G00) IN STEPS OF 5.0, FOR SMALL ZETAS.
DIMENSIONS(4C35406)9T(6)yETA(4L) 3 ZE(5),G(2,47)35TRS(6)
INPUT OF ZETAS
READINPUTTAPET 380 4NZy (ZE(I)y1=1,4NZ)
FORMAT(12/(F12.3))

STORING OF ETAS
DC7C1IkE=1,20
ETA(IE)=0.25#FLOATF(IE)
DOTC2IE=21,30
ETA(IE)==5,+0,5#FLOATF(IE)
DC7021C=31,40
ETALTE)I=1E-2C
£ST2=1.35094912

GAMMA RUOUTING

JG=1

G=1CC.

GBTO3L3

JG=2

I1G=105

GGTO312

IG=1G+1:2
[F(29C0~-1G)316453194312
JG=3

IC=11¢

GCTL312

JG=4

GOrosiz

ETA LODPING

IE=1E+]
IF(4C-1E)308,207,307
ZETA LOGPING

1Z=172+1
IF(NZ=-12)31D,309,3C9
GUTC(311,3154315,322),J6
FUNCTICNS GF CAMMA IN INTEGRANCS
ASYMPTOTIC EXPANSIUNS
G=16

G2=G*=(

G3=62#0
D1=-G2#(3-3.#G2%G2z-10.125%62~¢€.75#G2

X+5.4140625%6-16.875+8.7451172/6+84.375/62
D15=-G2%#(3-3.5%62%862-11.625#G3-8.25#G2

X+5.5765625%6-16.875412.0849€1/G+74.53125/62
T711=(4.5%G3+12.75%62-21.5375%6+25.3125

X+294355469/6-274.21875/G2) /L1
TZ21=(-3.75%#G2#G2+132.5%63-45.3125%G2

X+32.34375%6+1¢0.3125)/0C1
TZ115=(0.5862%G2+7.5%63+415.#G2-19.68752C

X422.5+27.597656/6-262.26563/G2) /D15
T7215=(2.4375%G2%G2+25.03125#(:3-40.863281%0C2

X+21.708984#G+182.39502)/015
TCL1=(4.5%G28C2+415.75%634c1.375262-36.28125%C

X+63,26125=-13.974609/0-229.0€25/62) /01
TC21=(-3.9375%G2#G2+4C.5625#C3-124.63984%G2

X+156.4101626+71.257224) /D4
TC115=(5.%G2#G2+16.675#63+421.5625%62-31.640625%C
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X+452.734375-19.995117/G-249.€0938/G2) /D15
TC215=(".9375#G2#62-12.650625%G3~-134.70703#G2
X+171.82617#G-5.6030273)/D15
TT11=(1..125%G3-6.75#G2-32.414063%C+61.382813
X-T74.8368867/6-95.185547/G2)/C1
TT21=(-0.5625%#G3=-30.9375%86243.1992188#%G
X+18.246094-166.09131/G)/01
TT115=(64125%C3-27.1875#62-54.539063 %G
X+477.167969-115.44434/6-59.919434/62) /D15
TT215=(-7.675%63-57.375#62+2.796875%G
X+11.6(1563-227.8125/G) /015
€ CALCULATION OF COMPLETE INTEGRAND INVGLVING ZETA, ETA
12=1
309 SN=SINF(G®ZE(I2Z)
CS=CUSF(G#ZE(IZ)
1g=1
307 E=ETA(IZ)=ETA(IE)/(ETA(IE)*ETA(LE)+G2)
T(1)=FE®#(2.#TZ11+E=TZ21)%CS
T(2)=E#(3.#TZ115+E#TZ2215)*CS
T(3)=E#(2.#1D11+E#T021)*CS
T(4)=Fo(3.,#TDL15+4E#TD215)%CS
T(5)=E#(TT11+2.#E#TT21)*SNk
T(6)=E#(1.5#TT115+2.#E«TT215)#SN
GOTC(314,313,217,320),J406
G SUMMATIONS
04 DC3C51S8=1,6
30588 (I EWI Ly [ S)=T (IS
GCTO0306
313 DC31415=1,6
304 S{TEyI2y1IS)=S(LEs1Z4+18)#4.*T(IS)
GCTU3C6
317 DO31615=i,6
A1 ERSCIE 2 1S)=S(IEs1Zy1S)#2,#T(5)
GCTO3C6
320 DC32115=1+6
SIS (LE Iy I5)=CST2% (5 (TEy 1741 5) Vi1 50
GCTU306
c BurPul
322 DO7141Z=1,N2
WRITEGUTPUTTAPEG, 7804 ZE (1) 9 (CTACIE) o (SIIELL2,41S),
X[S=146)41E=1,4C)
714 CONTINUE
785 FORMAT(1HiF7.3/(F8.2,6F17.8))
WRITEQUIPUTTAPEG, 790
79C FORMAT(LlHY)
INTEGRATICN OVER G(ALPHALETA)
G(lyETA),G(Lle5,ETA)FRUM PKOCRAM 8
G(XI) FOR ALPHA ECUALS lav
G(ly1)=.20154125
G(ly2)=.20993569
Glly3)=.21978752
G(ly4)=.22626457
G(1y5)=.21693650
Glle6)=.18155049
G(ly7)=.13003021
Gl1,8)=.84137466E-1
G(1y9)=.52481723E-1
G(ly1C)=433241545E-1
G(1ly11)=,2132735CE~1
G(lyl2)=e14224672E-1
6(1,13)=.97755832E-2
G(ly14)=.691950350-¢

)
)

[aNeNal
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G(1ly15)=e5C199737E-2
Gliy16)=.37282833E-2
G(1,17)=.28227726E-2
G(1ly18)=.2176870GE-2
G(1,19)=.17043766E-2
G(1,20)=.13537167E-2
G(1,21)=.8854CC18E-3
G(1922)=.060372003E-3
G(1y23)=.42581421E-3
G(1y24)=430909523E-3
Gily25)=s22985333E-3
Gifly26)=51T7456127E~3
G(1y27)=413498336E-2
G(1,28)=.,10606523E-3
G(1,29)=.84515418E~4
G(1,30)=.68194988E-4
G(L,31)=.4586395%E-4
G(l,32)=.31998922E-4
G(1433)=.23014008E-4
G(1,34)=.16982160E-4
G(1435)=.12808580E-4
G(1,36)=498455451E-5
G(1,37)=.76940523E-5
G(1,38)=.61709600E-5
G(1439)=449C06505E-5
G(1,40)=.39822131E-5
G(XI) FOR ALPHA EQUALS 1.5
Gl2,1)1=297895779E-1
G(2,2)=.98713586t~1
G(2,3)=.10012824
G(2y4)=.99914737E-1
Gl245)=.92933235E~1
G(246)=.75519875E-1
G(2,7)=452592502E-1
G(2,8)=.33125947E-1
G(2,9)1=.20145591E-1
G(2,10)=.12380441E-1
Gl2,01)1=s78127421E~2
G(2912)=¢51004198E-2
G(2,13)=434359130L-2
G(24y14)=.23866579E-2
Gl2,15)=.17014134E=2
G(2416)=.1242938CE-2
G(2417)=.92674737€-3
G(2,18)=,70445783E-3
G(24919)=.54421783E-3
G(2,20)=.42685848c-3
Gili2y2l)=s27223131E=3
G(2922)=.18244641E-3
GlZ2923)=.12646843E-3
G(2924)=.9C0412962E=4
G(2,25)=.663359907E-4
G(2,26)=.49789564E-4
G(2,27)1=438101513E-4
G(2,28)=.29663067L-4
G(2929)=.23443080E-4
G(243C0)=.18778225E-4
G(2921)=.12473916E-4
G(2932)=.B6167022E-5
G(2,33)=.61473403E-5
Glzy24)=e45062138E-5
G(2,35)=.33602395E-5
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o

124

1(:21e

728
126
783

G(2,36)=e25865C50E=5
Gl2y37) =201 326259 =5
G(2,36)=415915941E-5
Gl2y29)=e12T5C054E=52

G (20401 =210336716E=25

MULTIPLY BY WEIGHTING FACTORS
D073CJ=1+2

DCT2CIE=191%0¢

G(Jy[E)=C(J IE)/3.

DO7211E=2/,18,2

G(Jy[E)=GlIyIE)/E.
G(Jy2C)=6(J,20) 74,

DC72¢1E=21+92942

GGy IE)=G(J,IE)/L05
LOT231E=22928,y2

G(JyIE)=G(JyIE)/3.
G(Jy30)=0.35%6(Jy33)
DC7241E=31439,2
G(JyIE)=G(JyIE)/.T5
DC7T251E=32438,2
GlJIy1E)=G(JyIEN/145
LIJyaG)=G(JyaU)/3.

DCTc612=1yN2

DC72715=146

STRS(IS)=u."

DC728IE=1,40
STRS(1)=STRS(1)+G(L,IE)#S(IE,12,41)
STRS(Z2)=STRS(2)+G(2,1E)#SIIE,1Z+2)
STRS(3)=STRS(2)+G(1,IE)«S(Iks12,3)
STRS(4)=STRS(4)+G(2,1E)#S(1E41Z244)
STRS(5)=STRS(5)+G(1,IE)#S(IEL[Z,45)
STRS(6)=STRS(E)+C(Zy [E)#S(IL,1Zy6)
WRITEOQUTPUVYTAPEG,T83,2E(1Z4) 4 (STRS(IS),1S=1,6)
FORMAT(F7.3/€6E17.8)

CALLSYSTEM

END  ( Loy Loy e » Loy ” )
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PROGRAM 17. STRESSES UN HCLE IN HALF-SPACE.
INTEGRALS OF G(ALPHA, ETA)XV(ETA, ZETA, ALPHA)
FCR LARGE ETA AND SMALL ZETA
DIMENSIUONV(36,1036)3ZE(10) 3t TA(36),GL(2,36),STRS(4,6),WCL(2,38)
Cl=.63661977

REACINPUTTAPET,178C,yNZy (ZL(IZ)s1Z2=14NZ)
FCRMAT(I2/(F1l2.3))

STORING OF ETAS

CC1l7C1IE=1417

ETALIE)=15+541E

DC17021IE=18,36

ETA(IE)=(IE-16)#100

DC17031Z=14NZ

2=12E(17)

_WRITECUTPUTTAPEG,1781,2

1781

1706

FCRMAT(1H1F8.2)
DC17041E=1,36

_E=ETA(IE)

IF(75.-€E%#2)1703,1706,1706
EEZ=C1#EXPF(-E=*Z)

_V(IEyIZy))=EEZ#(2.%2%E2864-2 ,5%EnE=Z+1.,5%E)

V(IE,1Z42)=ECZ#(2.#/#E#2#4—0,T5#E*E®7+5,25%E)
VIIE,IZ243)=FcZ#(3.57#E*#4—-9 ,75#E#E#7+2,25%E)

V(IE,12,4)=EEZ®(2.5%22E#%4=G, 3T5%E#ERZ+5,625%C)

V(IEyIZ45)=FEZ#(2.%2%E##3+4,5%E%7)-12.#(C1-EEZ)
V(IE,12,6)=FEEZ=(3,%2#E=%3+6,75%E%2)-24.%(CL-EEZ)

WRITECUTPUTTAPEG, 1782,Es(VIIE,IZ,15),15=1,6)

1782
1704
1703

FCRMAT(F12.3,€6E17.68)
CCNTINUE

CONT INUE ,,
INTEGRATION OVER G(ALPHA, ETA), ETA (20,2000)
G(XxI) FOR ALPHA EQUALS 1.0
Gl 1) =s39822131E=5
GL(1,2)=.16191809E-5
GL(1,2)=.77825388kE-6
GL(1l,4)=.41943768E-6
GLL1,5)=.24570713E-6
GL(1l,€)=415336414E-6

_GL(1,7)=.100627C9E-6

GL(1,8)=.68741561F-7

GL(1,9)=.48547497E-7

GL{1,10)=,35255710E=7
GL(1,11)=4,26218130E-7
GL(1,12)=.19900146E-7
GL(1413)=.15375868E~-7
GL(1,14)=.12067421E-7
GL(1,15)=.96C28132E-8

_GL(1,16)=,77364523E-8 g PR

GL(1y17)=.63023160E-8
GL(1,18)=.39379518E-9

_GL(1,19)=.77591538E-10

GL(1,20)=.24469028E-10
GL(1,21)=.99831569E-11

_ GL(1,22)=.47928589E-11

GL(1,23)=,25742009E-11
GL(1,24)=.15007791E-11
GL(1,25)=.93149386E-12



GL{1,26)=.60740136E-12
 GL(1427)=.41219684E-12
GL(1,28)=.289C9563E-12
GL(1429)=.20844512E-12
GL(1,30)=.15387694E-12
7 GL(1,31)=.11592451E~12
GL(1,32)=.88891862E-13
GL(1,33)=,69231106E-13

T GL(1,24)=.54667366E-13
GL(1,35)=.43701289E-13
GL(1,36)=.35323215E-13

C  G(XI) FOR ALPHA EGUALS 1.5

GL(2,1)=.10336716E-5
GL(2,2)=.41716614E-6
GL(2,3)=41997666TE-6
GL(2,4)=.10745283E-6
GL(2,5)=.62878519E-7
GL(2,6)=.39223833E-7
GL(2,7)=.25727630E-7
GL(2,8)=.17572396E-7
GL(2,9)=.12409252E-7
GL(2,10)=.90115547E-8
GL(Z,11)=.67C15941E-8
GL(2,12)=.50868314E-8
GL(Z,13)=.393C5232E-8
GL(2,14)=.30849447E-8
GL(Z,15)=.24550185C-8
GL(2,16)=.19779795E-8
GL(2,17)=.16113962E-8
GL(2,18)=.10C74884E-9
GL(2,19)=.19854645E-10
GL(2,20)=46261T0T96-11
GL(2,21)=425547955E-11
GL(Z,22)=.12265598E-11
GL(2,23)=.658778836-12
GL(2,24)=.38407473E-12
GL(2,25)=.23638560E-12
GLI2y26)=415544492E-12
GL(2,27)=.1054B8872E~-12
GL(2,28)=.73984955E-13
GL(Z929)=.53345039E-13
GL{2,30)=.39380048E-13
GL(2,31)=.29667326E-13
GL(2,32)=.22749168E-13
GL(2,33)=.1771761GE-13
GL(2,34)=,13950474E-13
GL(2,35)=,11164C47E-13
GL(2,36)=.90399344E-14

C MULTIPLY BY WEIGHTING FACTURS

DC17104=1,2

c INTERVAL (20, 100)

WCLI(Jy1)=GL(Jy1)/Cab
DC17111E=2416,42

1711 WGL(JyIE)=GL(JyIE)/Le15
DC17121IK=3415,42

1712 WGL(J,IE)=GL(J,yIE)/D.3
WGL(Jy17)=GL(JU,417)/0.6

c INTERVAL (10C, 9CC)

WCL(Jy18)=GL(J,17)%10C./3.
DO17121c=18,2442
1EE=JE+]

1713 WOGL(J,TEE)=CL(J,IE)#4(C./3,



DO17141E=194+2342
JEE=IE*]
1714 WGL(J, IEE)= GL(JyIE)*ZOu./3.
WCL(J,26)=GL(J,25)%100./3.
INTERVAL (900, 19CC)_
NGL(J:27)-GL(J125)*IOC /3.
DOl7151E=2643442
indfFE=1E3P -
1715 WGL(J,1EE)= GL(J,1E)*400./3.
DC171€1E=27433,2
R[EE=TE®2 T
1716 WGL(JyI:E)'GL(J'IE)'ZOO /3.
WCL(J»37)=6GL(J,35)#100./3.
B710 CONTINUE
CC1l7171Z=1,4NZ
WRITECUTPUTTAPEG6,1783,ZE(IZ)
1783 FCRMAT(1HL1F12.3)
DC1718J=1+3
DC17181S=1,6
1718 STRS(J+15)=0.0
DC1l7191IS=145,2
155=15+1
DGL7201E=1,17
STRS(I.IS)-STRS(I TS)+WGL (L1, IE)*V(IE,12,15)
1720 STRS(1,ISS)=STRS{1,ISS)I+WGL(2,1E)*VIIE,IZ,1SS)
DOL7211E=17,25
IEE-1E*]
STRS(2,[S)=STRS(2,IS)+WGL(1,IEE)#VI(IE,1Z,IS)

1721 STRS(2,ISS)=STRS(2,SS)+WGL(2,1EE) *V(IELTZ,155)

D0172212=25,35
IEE=1E+2
STRS(3,IS)=STRS(3, IS)+WGL (L, IEE)#V(IE,IZ,IS)

1722 STRS(3,155)=STRS(3,ISS)+WGL(2,1EE)#V(IE,1Z,15S)

oo o

STRS(4,1S)=STRS(1,IS)+STRS(2,IS)+STRS(3,1S)
1719 STRS(4,1S5)=STRS(1,ISS)+STRS(2,ISS)+STRS(3,IS55)
DC1723J=1,4
1723 WRITECUTPUTTAPE6,1784,J,(STRS(J,1S),15=1,6)
1 REFERS TO INTEGRAL OVER THE INTERVAL (20, 100)
2 REFERS TO INTERVAL (100, $0C)
3 REFERS TO INTERVAL (9C0,1900)
4 REFERS TO INTERVAL (2C, 1900)
1784 FCRMAT(I14,6E17.8)
1717 CCNTINUE
_CALLSYSTEM L€ S ) :
END 1, 1 0 1, 0 )
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